Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 638: 168-175, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459881

RESUMO

ALS2/alsin, the causative gene product for a number of juvenile recessive motor neuron diseases, acts as a guanine nucleotide exchange factor (GEF) for Rab5, regulating early endosome trafficking and maturation. It has been demonstrated that ALS2 forms a tetramer, and this oligomerization is essential for its GEF activity and endosomal localization in established cancer cells. However, despite that ALS2 deficiency is implicated in neurological diseases, neither the subcellular distribution of ALS2 nor the form of its complex in the central nervous system (CNS) has been investigated. In this study, we showed that ALS2 in the brain was enriched both in synaptosomal and cytosolic fractions, while those in the liver were almost exclusively present in cytosolic fraction by differential centrifugation. Gel filtration chromatography revealed that cytosolic ALS2 prepared both from the brain and liver formed a tetramer. Remarkably, synaptosomal ALS2 existed as a high-molecular weight complex in addition to a tetramer. Such complex was also observed not only in embryonic brain but also several neuronal and glial cultures, but not in fibroblast-derived cell lines. Thus, the high-molecular weight ALS2 complex represents a unique form of ALS2-homophilic oligomers in the CNS, which may play a role in the maintenance of neural function.


Assuntos
Esclerose Lateral Amiotrófica , Sinaptossomos , Camundongos , Animais , Sinaptossomos/metabolismo , Peso Molecular , Endossomos/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Sistema Nervoso Central/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Encéfalo/metabolismo
2.
Biochem Biophys Res Commun ; 569: 106-111, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34243065

RESUMO

ALS2, a product of the causative gene for familial amyotrophic lateral sclerosis (ALS) type 2, plays a pivotal role in the regulation of endosome dynamics by activating small GTPase Rab5 via its intrinsic guanine nucleotide-exchange factor activity. Previously, we have reported that the N-terminal region of ALS2 has crucial roles in its endosomal localization and self-oligomerization, both of which are indispensable for the cellular function of ALS2. The N-terminus of ALS2 contains the regulator of chromosome condensation 1-like domain (RLD), which is predicted to form a seven-bladed ß-propeller structure. Interestingly, the RLD is interrupted by the intrinsically disordered region (IDR), within which there are several amino acid residues which undergo phosphorylation. In this study, we sought to investigate as to whether and how the IDR as well as phosphorylation at either Ser483, Ser492 or Thr510 affect the intracellular localization and self-oligomerization of ALS2. All phospho- and dephospho-mimetic ALS2 mutants that were transiently expressed in HeLa cells were diffusely distributed throughout the cytosol with a partial localization to early endosomes. When expressed under Rac1-activating conditions, these mutants were localized to membrane ruffles as well as enlarged endosomes. Further, gel-filtration analysis revealed that these mutants primarily existed as a tetramer in cells. However, all these phenotypes were indistinguishable from those of wild-type ALS2. On the other hand, IDR-deleted ALS2 mutant was exclusively present in perinuclear aggregates colocalizing with the autophagy-related protein SQSTM1. Moreover, IDR-deleted ALS2 mutant formed an abnormally high molecular weight complex compared to wild-type ALS2. These results indicate that the IDR of ALS2 plays a crucial role not only in the regulation of intracellular localization but also in the self-oligomerization of ALS2 in cells, whereas phosphorylation of certain residues within the IDR exerts limited effects on such phenotypes.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Espaço Intracelular/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Multimerização Proteica , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Western Blotting , Endossomos/metabolismo , Predisposição Genética para Doença/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Microscopia de Fluorescência , Mutação , Fosforilação , Ligação Proteica , Transporte Proteico , Proteína Sequestossoma-1/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
3.
Biochem Biophys Res Commun ; 523(4): 908-915, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31959474

RESUMO

Small GTPase Rab17 has been shown to regulate a wide range of physiological processes including cell migration in tumor cells and dendrite morphogenesis in neurons. However, molecular mechanism underlying Rab17-mediated intracellular trafficking is still unclear. To address this issue, we focused on Rab17-interacting protein ALS2, which was also known as a guanine nucleotide exchange factor (GEF) for Rab5, and investigated how ALS2 contributed to Rab17-associated membrane trafficking in cells. Rab17 was primarily localized to endosomal compartments, particularly to recycling endosomes, which was dependent on Rab11 expression. Upon Rac1 activation, Rab17 along with ALS2 was recruited to membrane ruffles and early endosomes in a Rab5 activity-independent manner. While RABGEF1, another Rab17-interacting Rab5 GEF, functioned as a GEF for Rab17, ALS2 did not possess such catalytic activity but merely interacted with Rab17. Importantly, ALS2 acted downstream of RABGEF1, regulating the maturation of Rab17-residing nascent endosomes to early endosome antigen 1 (EEA1)-positive early endosomes. Further, these Rab17-residing nascent endosomes were arisen via clathrin-independent endocytosis (CIE). Collectively, ALS2 plays a crucial role in the regulation of Rab17-associated endosomal trafficking and maturation, probably through their physical interaction, in cells.


Assuntos
Endossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitose , Células HeLa , Humanos , Ligação Proteica , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
J Biol Chem ; 293(44): 17135-17153, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224357

RESUMO

Familial amyotrophic lateral sclerosis type 2 (ALS2) is a juvenile autosomal recessive motor neuron disease caused by the mutations in the ALS2 gene. The ALS2 gene product, ALS2/alsin, forms a homophilic oligomer and acts as a guanine nucleotide-exchange factor (GEF) for the small GTPase Rab5. This oligomerization is crucial for both Rab5 activation and ALS2-mediated endosome fusion and maturation in cells. Recently, we have shown that pathogenic missense ALS2 mutants retaining the Rab5 GEF activity fail to properly localize to endosomes via Rac1-stimulated macropinocytosis. However, the molecular mechanisms underlying dysregulated distribution of ALS2 variants remain poorly understood. Therefore, we sought to clarify the relationship between intracellular localization and oligomeric states of pathogenic ALS2 variants. Upon Rac family small GTPase 1 (Rac1) activation, all mutants tested moved from the cytosol to membrane ruffles but not to macropinosomes and/or endosomes. Furthermore, most WT ALS2 complexes were tetramers. Importantly, the sizes of an ALS2 complex carrying missense mutations in the N terminus of the regulator of chromosome condensation 1-like domain (RLD) or in-frame deletion in the pleckstrin homology domain were shifted toward higher molecular weight, whereas the C-terminal vacuolar protein sorting 9 (VPS9) domain missense mutant existed as a smaller dimeric or trimeric smaller form. Furthermore, in silico mutagenesis analyses using the RLD protein structure in conjunction with a cycloheximide chase assay in vitro disclosed that these missense mutations led to a decrease in protein stability. Collectively, disorganized higher structures of ALS2 variants might explain their impaired endosomal localization and the stability, leading to loss of the ALS2 function.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Endossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Esclerose Lateral Amiotrófica/genética , Endossomos/química , Endossomos/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Mutação de Sentido Incorreto , Estabilidade Proteica , Transporte Proteico , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Hum Mol Genet ; 25(15): 3321-3340, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27439389

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by a selective loss of motor neurons in the brain and spinal cord. Multiple toxicity pathways, such as oxidative stress, misfolded protein accumulation, and dysfunctional autophagy, are implicated in the pathogenesis of ALS. However, the molecular basis of the interplay between such multiple factors in vivo remains unclear. Here, we report that two independent ALS-linked autophagy-associated gene products; SQSTM1/p62 and ALS2/alsin, but not antioxidant-related factor; NFE2L2/Nrf2, are implicated in the pathogenesis in mutant SOD1 transgenic ALS models. We generated SOD1H46R mice either on a Nfe2l2-null, Sqstm1-null, or Sqstm1/Als2-double null background. Loss of SQSTM1 but not NFE2L2 exacerbated disease symptoms. A simultaneous inactivation of SQSTM1 and ALS2 further accelerated the onset of disease. Biochemical analyses revealed that loss of SQSTM1 increased the level of insoluble SOD1 at the intermediate stage of the disease, whereas no further elevation occurred at the end-stage. Notably, absence of SQSTM1 rather suppressed the mutant SOD1-dependent accumulation of insoluble polyubiquitinated proteins, while ALS2 loss enhanced it. Histopathological examinations demonstrated that loss of SQSTM1 accelerated motor neuron degeneration with accompanying the preferential accumulation of ubiquitin-positive aggregates in spinal neurons. Since SQSTM1 loss is more detrimental to SOD1H46R mice than lack of ALS2, the selective accumulation of such aggregates in neurons might be more insulting than the biochemically-detectable insoluble proteins. Collectively, two ALS-linked factors, SQSTM1 and ALS2, have distinct but additive protective roles against mutant SOD1-mediated toxicity by modulating neuronal proteostasis possibly through the autophagy-endolysosomal system.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neurônios Motores/metabolismo , Proteína Sequestossoma-1/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Autofagia/genética , Encéfalo/patologia , Endossomos/genética , Endossomos/metabolismo , Endossomos/patologia , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Mutação de Sentido Incorreto , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Sequestossoma-1/genética , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
6.
J Cell Biol ; 221(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35442388

RESUMO

Tail-anchored (TA) membrane proteins have a potential risk to be mistargeted to the mitochondrial outer membrane (OM). Such mislocalized TA proteins can be extracted by the mitochondrial AAA-ATPase Msp1 from the OM and transferred to the ER for ER protein quality control involving ubiquitination by the ER-resident Doa10 complex. Yet it remains unclear how the extracted TA proteins can move to the ER crossing the aqueous cytosol and whether this transfer to the ER is essential for the clearance of mislocalized TA proteins. Here we show by time-lapse microscopy that mislocalized TA proteins, including an authentic ER-TA protein, indeed move from mitochondria to the ER in a manner strictly dependent on Msp1 expression. The Msp1-dependent mitochondria-to-ER transfer of TA proteins is blocked by defects in the GET system, and this block is not due to impaired Doa10 functions. Thus, the GET pathway facilitates the transfer of mislocalized TA proteins from mitochondria to the ER.


Assuntos
Adenosina Trifosfatases , Retículo Endoplasmático , Proteínas de Membrana , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Neurosci Res ; 174: 46-52, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352295

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective loss of motor neurons. We have previously shown that autophagosome-like vesicular structures are progressively accumulated in the spinal axons of an ALS mouse model, overexpressing human Cu/Zn superoxide dismutase (SOD1) mutant, prior to the onset of motor symptoms. This suggests that axonal transport perturbation can be an early sign of neuronal dysfunction. However, the exact causal relationship between axonal transport deficits and neurodegeneration is not fully understood. To clarify whether axonal transport of organelles even in neurons at early developmental stages was affected by overexpression of mutant SOD1, we conducted a microfluidic device-based high-throughput quantitative analysis of the axonal transport of acidic vesicles and mitochondria in primary cultured cortical neurons established from SOD1H46R transgenic mice. Compared to wild-type (WT), a significantly increased number of motile acidic vesicles, i.e., autophagosomes and/or late-endosomes, was observed in the axons of SOD1H46R neurons. By contrast, mitochondria moving along the axons were significantly decreased in SOD1H46R compared to WT. Since such phenotypes, where the axonal transport of these organelles is differently affected by mutant SOD1 expression, emerge before axonal degeneration, axonal transport deficits could dysregulate axon homeostasis, thereby ultimately accelerating neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Animais , Transporte Axonal , Modelos Animais de Doenças , Dispositivos Lab-On-A-Chip , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
8.
eNeurologicalSci ; 22: 100301, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33319079

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are genetically, pathologically and clinically-related progressive neurodegenerative diseases. Thus far, several SQSTM1 variations have been identified in patients with ALS and FTD. However, it remains unclear how SQSTM1 variations lead to neurodegeneration. To address this issue, we investigated the effects of ectopic expression of SQSTM1 variants, which were originally identified in Japanese and Chinese sporadic ALS patients, on the cellular viability, their intracellular distributions and the autophagic activity in cultured cells. Expression of SQSTM1 variants in PC12 cells exerted no observable effects on viabilities under both normal and oxidative-stressed conditions. Further, although expression of SQSTM1 variants in PC12 cells and Sqstm1-deficient mouse embryonic fibroblasts resulted in the formation of numerous granular SQSTM1-positive structures, called SQSTM1-bodies, their intracellular distributions were indistinguishable from those of wild-type SQSTM1. Nonetheless, quantitative colocalization analysis of SQSTM1-bodies with MAP1LC3 demonstrated that among ALS-linked SQSTM1 variants, L341V variant showed the significantly lower level of colocalization. However, there were no consistent effects on the autophagic activities among the variants examined. These results suggest that although some ALS-linked SQSTM1 variations have a discernible effect on the intracellular distribution of SQSTM1-bodies, the impacts of other variations on the cellular homeostasis are rather limited at least under transiently-expressed conditions.

9.
Mol Brain ; 11(1): 30, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843805

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a selective loss of upper and lower motor neurons. Recent studies have shown that mutations in SQSTM1 are linked to ALS. SQSTM1 encodes SQSTM1/p62 that regulates not only autophagy via the association with MAP1LC3/LC3 and ubiquitinated proteins but also the KEAP1-NFE2L2/Nrf2 anti-oxidative stress pathway by interacting with KEAP1. Previously, we have demonstrated that loss of SQSTM1 exacerbates disease phenotypes in a SOD1H46R-expressing ALS mouse model. To clarify the effects of SQSTM1 overexpression in this model, we generated SQSTM1 and SOD1 H46R double-transgenic (SQSTM1;SOD1 H46R ) mice. SQSTM1;SOD1 H46R mice exhibited earlier disease onset and shorter lifespan than did SOD1 H46R mice. Conversely, disease progression after the onset rather slightly but significantly slowed in SQSTM1;SOD1 H46R mice. However, there were observable differences neither in the number of Nissl positive neurons nor in the distribution of ubiquitin-positive and/or SQSTM1-positive aggregates between SOD1 H46R and SQSTM1;SOD1 H46R mice. It was noted that these protein aggregates were mainly observed in neuropil, and partly localized to astrocytes and/or microglia, but not to MAP2-positive neuronal cell bodies and dendrites at the end-stage of disease. Nonetheless, the biochemically-detectable insoluble SQSTM1 and poly-ubiquitinated proteins were significantly and progressively increased in the spinal cord of SQSTM1;SOD1 H46R mice compared to SOD1 H46R mice. These results suggest that overexpression of SQSTM1 in SOD1 H46R mice accelerates disease onset by compromising the protein degradation pathways.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Progressão da Doença , Proteína Sequestossoma-1/metabolismo , Superóxido Dismutase-1/genética , Animais , Células do Corno Anterior/metabolismo , Células do Corno Anterior/patologia , Peso Corporal , Contagem de Células , Modelos Animais de Doenças , Feminino , Longevidade , Vértebras Lombares/metabolismo , Vértebras Lombares/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Neuroglia/metabolismo , Fosforilação , Poliubiquitina/metabolismo , Agregados Proteicos , Dobramento de Proteína , Solubilidade , Análise de Sobrevida , Distribuição Tecidual , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA