Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 746: 141241, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763609

RESUMO

Vegetated coastal ecosystems (VCEs) are in global decline and sensitive to climate change; yet may also assist its mitigation through high rates of 'blue' carbon sequestration and storage. Alterations of relative sea-level (RSL) are pervasive drivers of change that reflect the interaction between tidal inundation regimes and ground surface elevation. Although many studies have investigated sediment accretion within VCEs, relatively few have addressed spatiotemporal patterns of resilience in response to RSL change. In this study, we used high resolution elevation models and field surveys to identify RSL changes and socio-ecological responses in a tidal lagoon system following earthquakes in New Zealand. We expected that vegetation changes would result from RSL effects caused by surface-elevation changes in intertidal zones. Elevation measurements showed a sequence of vertical displacements resulting from major earthquakes in 2011 and 2012, and additional surface-elevation loss since. VCE losses were recorded over an 8 year period post-2011 in response to high rates of RSL rise (up to 41 mm yr-1). Anthropogenic factors influenced the pattern of losses and illustrate opportunities for managing risks to other VCEs facing RSL rise. Four key principles for building VCE resilience were identified: i) anthropogenic encroachment results in resilience loss due to the need for landward migration when changes exceed the tolerance thresholds of VCEs at their lower elevational limits; ii) connectivity losses exacerbate encroachment effects, and conversely, are a practical focus for management; iii) landscape-scale risk exposure is disproportionately influenced by the largest wetland remnants illustrating the importance of site-specific vulnerabilities and their assessment; and iv) establishing new protected areas to accommodate the movement of VCEs is needed, and requires a combination of land tenure rearrangements and connectivity conservation. Embracing these concepts offers promise for improving whole-system resilience to help address the challenge of global climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA