Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124949

RESUMO

Chagas disease, a silent but widespread disease that mainly affects a socioeconomically vulnerable population, lacks innovative safe drug therapy. The available drugs, benznidazole and nifurtimox, are more than fifty years old, have limited efficacy, and carry harmful side effects, highlighting the need for new therapeutics. This study presents two new series of pyrazole-thiadiazole compounds evaluated for trypanocidal activity using cellular models predictive of efficacy. Derivatives 1c (2,4-diCl) and 2k (4-NO2) were the most active against intracellular amastigotes. Derivative 1c also showed activity against trypomastigotes, with the detachment of the flagellum from the parasite body being a predominant effect at the ultrastructural level. Analogs have favorable physicochemical parameters and are predicted to be orally available. Drug efficacy was also evaluated in 3D cardiac microtissue, an important target tissue of Trypanosoma cruzi, with derivative 2k showing potent antiparasitic activity and a significant reduction in parasite load. Although 2k potentially reduced parasite load in the washout assay, it did not prevent parasite recrudescence. Drug combination analysis revealed an additive profile, which may lead to favorable clinical outcomes. Our data demonstrate the antiparasitic activity of pyrazole-thiadiazole derivatives and support the development of these compounds using new optimization strategies.


Assuntos
Pirazóis , Tiadiazóis , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Tiadiazóis/química , Tiadiazóis/farmacologia , Tiadiazóis/síntese química , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Tripanossomicidas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/química , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Humanos
2.
Molecules ; 26(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771151

RESUMO

Chagas disease, a chronic and silent disease caused by Trypanosoma cruzi, is currently a global public health problem. The treatment of this neglected disease relies on benznidazole and nifurtimox, two nitroheterocyclic drugs that show limited efficacy and severe side effects. The failure of potential drug candidates in Chagas disease clinical trials highlighted the urgent need to identify new effective chemical entities and more predictive tools to improve translational success in the drug development pipeline. In this study, we designed a small library of pyrazole derivatives (44 analogs) based on a hit compound, previously identified as a T. cruzi cysteine protease inhibitor. The in vitro phenotypic screening revealed compounds 3g, 3j, and 3m as promising candidates, with IC50 values of 6.09 ± 0.52, 2.75 ± 0.62, and 3.58 ± 0.25 µM, respectively, against intracellular amastigotes. All pyrazole derivatives have good oral bioavailability prediction. The structure-activity relationship (SAR) analysis revealed increased potency of 1-aryl-1H-pyrazole-imidazoline derivatives with the Br, Cl, and methyl substituents in the para-position. The 3m compound stands out for its trypanocidal efficacy in 3D microtissue, which mimics tissue microarchitecture and physiology, and abolishment of parasite recrudescence in vitro. Our findings encourage the progression of the promising candidate for preclinical in vivo studies.


Assuntos
Técnicas de Cultura de Células , Doença de Chagas/tratamento farmacológico , Impressão Tridimensional , Pirazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Humanos , Modelos Moleculares , Testes de Sensibilidade Parasitária , Pirazóis/química , Tripanossomicidas/química
3.
Biology (Basel) ; 12(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37759621

RESUMO

Chagas disease therapy still relies on two nitroderivatives, nifurtimox and benznidazole (Bz), which have important limitations and serious adverse effects. New therapeutic alternatives for this silent disease, which has become a worldwide public health problem, are essential for its control and elimination. In this study, 1,2,3-triazole analogues were evaluated for efficacy against T. cruzi. Three triazole derivatives, 1d (0.21 µM), 1f (1.23 µM), and 1g (2.28 µM), showed potent activity against trypomastigotes, reaching IC50 values 10 to 100 times greater than Bz (22.79 µM). Promising candidates are active against intracellular amastigotes (IC50 ≤ 6.20 µM). Treatment of 3D cardiac spheroids, a translational in vitro model, significantly reduced parasite load, indicating good drug diffusion and efficacy. Oral bioavailability was predicted for triazole derivatives. Although infection was significantly reduced without drug pressure in a washout assay, the triazole derivatives did not inhibit parasite resurgence. An isobologram analysis revealed an additive interaction when 1,2,3-triazole analogs and Bz were combined in vitro. These data indicate a strengthened potential of the triazole scaffold and encourage optimization based on an analysis of the structure-activity relationship aimed at identifying new compounds potentially active against T. cruzi.

4.
Pharmaceutics ; 14(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35631581

RESUMO

Chagas disease, a century-old disease that mainly affects the impoverished population in Latin America, causes high morbidity and mortality in endemic countries. The available drugs, benznidazole (Bz) and nifurtimox, have limited effectiveness and intense side effects. Drug repurposing, and the development of new chemical entities with potent activity against Trypanosoma cruzi, are a potential source of therapeutic options. The present study describes the biological activity of two new series of pyrazole-thiazoline derivatives, based on optimization of a hit system 5-aminopyrazole-imidazoline previously identified, using structure−activity relationship exploration, and computational and phenotype-based strategies. Promising candidates, 2c, 2e, and 2i derivatives, showed good oral bioavailability and ADMET properties, and low cytotoxicity (CC50 > 100 µM) besides potent activity against trypomastigotes (0.4−2.1 µM) compared to Bz (19.6 ± 2.3 µM). Among them, 2c also stands out, with greater potency against intracellular amastigotes (pIC50 = 5.85). The selected pyrazole-thiazoline derivatives showed good permeability and effectiveness in the 3D spheroids system, but did not sustain parasite clearance in a washout assay. The compounds' mechanism of action is still unknown, since the treatment neither increased reactive oxygen species, nor reduced cysteine protease activity. This new scaffold will be targeted to optimize in order to enhance its biological activity to identify new drug candidates for Chagas disease therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA