Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 37(5): e23315, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36732937

RESUMO

Vascular endothelial growth factor (VEGF) exerts neuroprotective or proinflammatory effects, depending on what VEGF forms (A-E), receptor types (VEGFR1-3), and intracellular signaling pathways are involved. Neonatal monosodium glutamate (MSG) treatment triggers neuronal death by excitotoxicity, which is commonly involved in different neurological disorders, including neurodegenerative diseases. This study was designed to evaluate the effects of VEGFR-2 inhibition on neuronal damage triggered by excitotoxicity in the cerebral motor cortex (CMC) and hippocampus (Hp) after neonatal MSG treatment. MSG was administered at a dose of 4 g/kg of body weight (b.w.) subcutaneously on postnatal days (PD) 1, 3, 5, and 7, whereas the VEGFR-2 inhibitor SU5416 was administered at a dose of 10 mg/kg b.w. subcutaneously on PD 5 and 7, 30 min before the MSG treatment. Neuronal damage was assessed using hematoxylin and eosin staining, fluoro-Jade staining, and TUNEL assay. Additionally, western blot assays for some proteins of the VEGF-A/VEGFR-2 signaling pathway (VEGF-A, VEGFR-2, PI3K, Akt, and iNOS) were carried out. All assays were performed on PD 6, 8, 10, and 14. Inhibition of VEGFR-2 signaling by SU5416 increases the neuronal damage induced by neonatal MSG treatment in both the CMC and Hp. Moreover, neonatal MSG treatment increased the expression levels of the studied VEGF-A/VEGFR-2 signaling pathway proteins, particularly in the CMC. We conclude that VEGF-A/VEGFR-2 signaling pathway activation could be part of the neuroprotective mechanisms that attempt to compensate for neuronal damage induced by neonatal MSG treatment and possibly also in other conditions involving excitotoxicity.


Assuntos
Hipocampo , Córtex Motor , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Hipocampo/efeitos dos fármacos , Córtex Motor/efeitos dos fármacos , Glutamato de Sódio/toxicidade , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais
2.
J Neuroimmunol ; 328: 68-72, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30597392

RESUMO

The vascular endothelial growth factor (VEGF) system has been shown to play a crucial role in several neuropathological processes. Temporal lobe epilepsy (TLE) is the most common focal epilepsy type in adult humans. We assessed the protein expression levels of VEGF-A, VEGF-B, and VEGF-C, their specific receptors VEGFR-2 and -3, their accessory receptors neuropilins 1 and 2, and PI3 and Akt kinases, in temporal neocortex from pharmacoresistant TLE (PR-TLE) patients and control subjects by western blotting. All proteins were found to be significantly overexpressed in samples of PR-TLE patients, indicating that the VEGF system contributes to PR-TLE pathogenesis and should be further studied.


Assuntos
Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Neocórtex/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Eur J Pharmacol ; 776: 81-9, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26875635

RESUMO

Nerol is a natural monoterpene with antinociceptive and anti-inflammatory properties. Its possible beneficial effects in ulcerative colitis and its corresponding mechanism of action have not been determined to date. The aim of this study was to investigate whether nerol prevents the appearance of pathological markers and hyperalgesia in oxazolone-induced colitis, and protects against gastric damage produced by ethanol. The experimental design included groups of oxazolone-treated mice receiving nerol at 10-300 mg/kg, p.o., or a reference drug (sulfasalazine, 100 mg/kg, p.o.) compared to sham and untreated groups. Gastric damage was evaluated in the absolute ethanol-induced ulcer model in rats. Variables measured in animals with oxazolone-induced colitis included weight loss, stool consistency and macroscopic colon damage; mechanical nociception was determined by the use of von Frey filaments, whereas levels of inflammatory cytokines were assessed by enzyme-linked immunosorbent assay. Nerol (30-300 mg/kg, p.o.) prevented or significantly decreased the pathological alterations observed in the oxazolone- induced colitis model. It also showed antinociceptive effects and reduced the increased levels of inflammatory cytokines (IL-13 and TNF-α). Gastric damage was also prevented starting at 10 mg/kg, p.o. In conclusion, our results provide evidence for a beneficial effect of nerol after colitis induction involving tissue protection, antinociception and modulation of the immunological system, suggesting the therapeutic potential of this monoterpene as a novel alternative in controlling ulcerative colitis.


Assuntos
Analgésicos/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Oxazolona/efeitos adversos , Analgésicos/uso terapêutico , Animais , Biomarcadores/metabolismo , Colite/metabolismo , Colite/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Citoproteção/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos
4.
J Mol Neurosci ; 52(2): 193-201, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24142572

RESUMO

Systemic administration of kainic acid (KA) in rodents triggers limbic seizures following selective neuronal loss in the hippocampus attributed to the excitotoxic process. Lipid peroxidation products, such as 4-hydroxynonenal, are produced by oxidative stress and are present on the hippocampus, which contribute to neuronal death in the KA excitotoxicity model. Several antioxidants are neuroprotective agents. The aim of the present study was to analyse whether pirfenidone (PFD, 5-methyl-1-phenyl-2-(1H)-pyridone), an antioxidant drug, protects the neurons in the hippocampus of pubescent rats administered with KA. We evaluated the neuroprotective effect of PFD by quantifying the surviving neurons under hematoxilin-eosin staining after using three different doses of 100, 250, and 325 mg/kg administered via an orogastric tube 90 min after KA intraperitoneal injection (12 mg/kg). Only 325 mg/kg of PFD-attenuated neuronal loss in the hippocampal areas cornu ammonis field 1 (CA1) and cornu ammonis field 3 (CA3c) was observed; therefore, this dose was used in our subsequent studies. Later, we established that PFD reduces neuronal degeneration using Fluoro-Jade B stain in the CA3c but not in the CA1, and PFD reduces the presence of 4-hydroxynonenal, a lipid peroxidation product, in the CA3 by tissue immunohistochemistry. We concluded that only a single 325 mg/kg PFD dose had a neuroprotective effect after KA brain injury. This treatment may be advantageous because adequate pharmacological therapy with PFD can be developed to protect the neuron even after an acute neuronal disorder such as seizures or hypoxic/ischemic damage.


Assuntos
Antioxidantes/farmacologia , Peroxidação de Lipídeos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piridonas/farmacologia , Potenciais de Ação , Animais , Morte Celular , Sobrevivência Celular , Relação Dose-Resposta a Droga , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Ácido Caínico/toxicidade , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA