Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108293

RESUMO

Therapy resistance hinders the efficacy of anti-androgen therapies and taxane-based chemotherapy for advanced prostate cancer (PCa). Glucocorticoid receptor (GR) signaling mediates resistance to androgen receptor signaling inhibitors (ARSI) and has also been recently implicated in PCa resistance to docetaxel (DTX), suggesting a role in therapy cross-resistance. Like GR, ß-catenin is upregulated in metastatic and therapy-resistant tumors and is a crucial regulator of cancer stemness and ARSI resistance. ß-catenin interacts with AR to promote PCa progression. Given the structural and functional similarities between AR and GR, we hypothesized that ß-catenin also interacts with GR to influence PCa stemness and chemoresistance. As expected, we observed that treatment with the glucocorticoid dexamethasone promotednuclear accumulation of GR and active ß-catenin in PCa cells. Co-immunoprecipitation studies showed that GR and ß-catenin interact in DTX-resistant and DTX-sensitive PCa cells. Pharmacological co-inhibition of GR and ß-catenin, using the GR modulator CORT-108297 and the selective ß-catenin inhibitor MSAB, enhanced cytotoxicity in DTX-resistant PCa cells grown in adherent and spheroid cultures and decreased CD44+/CD24- cell populations in tumorspheres. These results indicate that GR and ß-catenin influence cell survival, stemness, and tumorsphere formation in DTX-resistant cells. Their co-inhibition could be a promising therapeutic strategy to overcome PCa therapy cross-resistance.


Assuntos
Neoplasias da Próstata , Receptores de Glucocorticoides , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , beta Catenina , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Resistencia a Medicamentos Antineoplásicos
2.
Biology (Basel) ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38785827

RESUMO

Vitamin D3 is a steroid hormone that confers anti-tumorigenic properties in prostate cells. Serum vitamin D3 deficiency has been associated with advanced prostate cancer (PCa), particularly affecting African American (AA) men. Therefore, elucidating the pleiotropic effects of vitamin D on signaling pathways, essential to maintaining non-malignancy, may provide additional drug targets to mitigate disparate outcomes for men with PCa, especially AA men. We conducted RNA sequencing on an AA non-malignant prostate cell line, RC-77N/E, comparing untreated cells to those treated with 10 nM of vitamin D3 metabolite, 1α,25(OH)2D3, at 24 h. Differential gene expression analysis revealed 1601 significant genes affected by 1α,25(OH)2D3 treatment. Pathway enrichment analysis predicted 1α,25(OH)2D3- mediated repression of prostate cancer, cell proliferation, actin cytoskeletal, and actin-related signaling pathways (p < 0.05). Prioritizing genes with vitamin D response elements and associating expression levels with overall survival (OS) in The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA PRAD) cohort, we identified ANLN (Anillin) and ECT2 (Epithelial Cell Transforming 2) as potential prognostic PCa biomarkers. Both genes were strongly correlated and significantly downregulated by 1α,25(OH)2D3 treatment, where low expression was statistically associated with better overall survival outcomes in the TCGA PRAD public cohort. Increased ANLN and ECT2 mRNA gene expression was significantly associated with PCa, and Gleason scores using both the TCGA cohort (p < 0.05) and an AA non-malignant/tumor-matched cohort. Our findings suggest 1α,25(OH)2D3 regulation of these biomarkers may be significant for PCa prevention. In addition, 1α,25(OH)2D3 could be used as an adjuvant treatment targeting actin cytoskeleton signaling and actin cytoskeleton-related signaling pathways, particularly among AA men.

3.
Diagnostics (Basel) ; 13(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36673033

RESUMO

The monospecific dense fine speckled (DFS) immunofluorescence assay (IFA) pattern is considered a potential marker to aid in exclusion of antinuclear antibody (ANA)-associated rheumatic diseases (AARD). This pattern is typically produced by autoantibodies against transcription co-activator DFS70/LEDGFp75, which are frequently found in healthy individuals and patients with miscellaneous inflammatory conditions. In AARD patients, these antibodies usually co-exist with disease-associated ANAs. Previous studies reported the occurrence of monospecific autoantibodies that generate a DFS-like or pseudo-DFS IFA pattern but do not react with DFS70/LEDGFp75. We characterized this pattern using confocal microscopy and immunoblotting. The target antigen associated with this pattern partially co-localized with DFS70/LEDGFp75 and its interacting partners H3K36me2, an active chromatin marker, and MLL, a transcription factor, in HEp-2 cells, suggesting a role in transcription. Immunoblotting did not reveal a common protein band immunoreactive with antibodies producing the pseudo-DFS pattern, suggesting they may recognize diverse proteins or conformational epitopes. Given the subjectivity of the HEp-2 IFA test, the awareness of pseudo-DFS autoantibodies reinforces recommendations for confirmatory testing when reporting patient antibodies producing a putative DFS pattern in a clinical setting. Future studies should focus on defining the potential diagnostic utility of the pseudo-DFS pattern and its associated antigen(s).

4.
Cells ; 12(16)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37626856

RESUMO

Patients with advanced prostate cancer (PCa) invariably develop resistance to anti-androgen therapy and taxane-based chemotherapy. Glucocorticoid receptor (GR) has been implicated in PCa therapy resistance; however, the mechanisms underlying GR-mediated chemoresistance remain unclear. Lens epithelium-derived growth factor p75 (LEDGF/p75, also known as PSIP1 and DFS70) is a glucocorticoid-induced transcription co-activator implicated in cancer chemoresistance. We investigated the contribution of the GR-LEDGF/p75 axis to docetaxel (DTX)-resistance in PCa cells. GR silencing in DTX-sensitive and -resistant PCa cells decreased LEDGF/p75 expression, and GR upregulation in enzalutamide-resistant cells correlated with increased LEDGF/p75 expression. ChIP-sequencing revealed GR binding sites in the LEDGF/p75 promoter. STRING protein-protein interaction analysis indicated that GR and LEDGF/p75 belong to the same transcriptional network, and immunochemical studies demonstrated their co-immunoprecipitation and co-localization in DTX-resistant cells. The GR modulators exicorilant and relacorilant increased the sensitivity of chemoresistant PCa cells to DTX-induced cell death, and this effect was more pronounced upon LEDGF/p75 silencing. RNA-sequencing of DTX-resistant cells with GR or LEDGF/p75 knockdown revealed a transcriptomic overlap targeting signaling pathways associated with cell survival and proliferation, cancer, and therapy resistance. These studies implicate the GR-LEDGF/p75 axis in PCa therapy resistance and provide a pre-clinical rationale for developing novel therapeutic strategies for advanced PCa.


Assuntos
Neoplasias da Próstata , Receptores de Glucocorticoides , Masculino , Humanos , Docetaxel/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Peptídeos e Proteínas de Sinalização Intercelular , Glucocorticoides
5.
Cells ; 10(10)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34685704

RESUMO

Patients with prostate cancer (PCa) receiving docetaxel chemotherapy invariably develop chemoresistance. The transcription co-activator lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 and PSIP1, is upregulated in several human cancers, including PCa and promotes resistance to docetaxel and other drugs. The C-terminal region of LEDGF/p75 contains an integrase binding domain (IBD) that tethers nuclear proteins, including the HIV-1 integrase and transcription factors, to active chromatin to promote viral integration and transcription of cellular survival genes. Here, we investigated the contribution of the LEDGF/p75 IBD interactome to PCa chemoresistance. Quantitative immunoblotting revealed that LEDGF/p75 and its IBD-interacting partners are endogenously upregulated in docetaxel-resistant PCa cell lines compared to docetaxel-sensitive parental cells. Using specific human autoantibodies, we co-immunoprecipitated LEDGF/p75 with its endogenous IBD-interacting partners JPO2, menin, MLL, IWS1, ASK1, and PogZ, as well as transcription factors c-MYC and HRP2, in docetaxel-resistant cells, and confirmed their nuclear co-localization by confocal microscopy. Depletion of LEDGF/p75 and selected interacting partners robustly decreased the survival, clonogenicity, and tumorsphere formation capacity of docetaxel-resistant cells. These results implicate the LEDGF/p75 IBD interactome in PCa chemoresistance and could lead to novel therapeutic strategies targeting this protein complex for the treatment of docetaxel-resistant tumors.


Assuntos
Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Esferoides Celulares/patologia , Especificidade de Anticorpos/imunologia , Apoptose/efeitos dos fármacos , Autoanticorpos/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Esferoides Celulares/efeitos dos fármacos
6.
Front Genet ; 11: 614726, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584813

RESUMO

Alpha-enolase, also known as enolase-1 (ENO1), is a glycolytic enzyme that "moonlights" as a plasminogen receptor in the cell surface, particularly in tumors, contributing to cancer cell proliferation, migration, invasion, and metastasis. ENO1 also promotes other oncogenic events, including protein-protein interactions that regulate glycolysis, activation of signaling pathways, and resistance to chemotherapy. ENO1 overexpression has been established in a broad range of human cancers and is often associated with poor prognosis. This increased expression is usually accompanied by the generation of anti-ENO1 autoantibodies in some cancer patients, making this protein a tumor associated antigen. These autoantibodies are common in patients with cancer associated retinopathy, where they exert pathogenic effects, and may be triggered by immunodominant peptides within the ENO1 sequence or by posttranslational modifications. ENO1 overexpression in multiple cancer types, localization in the tumor cell surface, and demonstrated targetability make this protein a promising cancer biomarker and therapeutic target. This mini-review summarizes our current knowledge of ENO1 functions in cancer and its growing potential as a cancer biomarker and guide for the development of novel anti-tumor treatments.

7.
Auto Immun Highlights ; 11(1): 3, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127038

RESUMO

The discovery and initial characterization 20 years ago of antinuclear autoantibodies (ANAs) presenting a dense fine speckled (DFS) nuclear pattern with strong staining of mitotic chromosomes, detected by indirect immunofluorescence assay in HEp-2 cells (HEp-2 IIFA test), has transformed our view on ANAs. Traditionally, ANAs have been considered as reporters of abnormal immunological events associated with the onset and progression of systemic autoimmune rheumatic diseases (SARD), also called ANA-associated rheumatic diseases (AARD), as well as clinical biomarkers for the differential diagnosis of these diseases. However, based on our current knowledge, it is not apparent that autoantibodies presenting the DFS IIF pattern fall into these categories. These antibodies invariably target a chromatin-associated protein designated as dense fine speckled protein of 70 kD (DFS70), also known as lens epithelium-derived growth factor protein of 75 kD (LEDGF/p75) and PC4 and SFRS1 Interacting protein 1 (PSIP1). This multi-functional protein, hereafter referred to as DFS70/LEDGF, plays important roles in the formation of transcription complexes in active chromatin, transcriptional activation of specific genes, regulation of mRNA splicing, DNA repair, and cellular survival against stress. Due to its multiple functions, it has emerged as a key protein contributing to several human pathologies, including acquired immunodeficiency syndrome (AIDS), leukemia, cancer, ocular diseases, and Rett syndrome. Unlike other ANAs, "monospecific" anti-DFS70/LEDGF autoantibodies (only detectable ANA in serum) are not associated with SARD and have been detected in healthy individuals and some patients with non-SARD inflammatory conditions. These observations have led to the hypotheses that these antibodies could be considered as negative biomarkers of SARD and might even play a protective or beneficial role. In spite of 20 years of research on this autoantibody-autoantigen system, its biological and clinical significance still remains enigmatic. Here we review the current state of knowledge of this system, focusing on the lessons learned and posing emerging questions that await further scrutiny as we continue our quest to unravel its significance and potential clinical and therapeutic utility.

8.
Sci Rep ; 8(1): 15063, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305646

RESUMO

Glucocorticoid receptor (GR) is emerging as a key driver of prostate cancer (PCa) progression and therapy resistance in the absence of androgen receptor (AR) signaling. Acting as a bypass mechanism, GR activates AR-regulated genes, although GR-target genes contributing to PCa therapy resistance remain to be identified. Emerging evidence also shows that African American (AA) men, who disproportionately develop aggressive PCa, have hypersensitive GR signaling linked to cumulative stressful life events. Using racially diverse PCa cell lines (MDA-PCa-2b, 22Rv1, PC3, and DU145) we examined the effects of glucocorticoids on the expression of two stress oncoproteins associated with PCa therapy resistance, Clusterin (CLU) and Lens Epithelium-Derived Growth Factor p75 (LEDGF/p75). We observed that glucocorticoids upregulated LEDGF/p75 and CLU in PCa cells. Blockade of GR activation abolished this upregulation. We also detected increased GR transcript expression in AA PCa tissues, compared to European American (EA) tissues, using Oncomine microarray datasets. These results demonstrate that glucocorticoids upregulate the therapy resistance-associated oncoproteins LEDGF/p75 and CLU, and suggest that this effect may be enhanced in AA PCa. This study provides an initial framework for understanding the contribution of glucocorticoid signaling to PCa health disparities.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Glucocorticoides/farmacologia , Proteínas Oncogênicas/genética , Neoplasias da Próstata/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Negro ou Afro-Americano , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Masculino , Proteínas Oncogênicas/metabolismo , Regiões Promotoras Genéticas , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Ligação Proteica , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , População Branca
9.
Oncotarget ; 9(54): 30363-30384, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30100995

RESUMO

Patients with metastatic castration-resistant prostate cancer (mCRPC) develop resistance to conventional therapies including docetaxel (DTX). Identifying molecular pathways underlying DTX resistance is critical for developing novel combinatorial therapies to prevent or reverse this resistance. To identify transcriptomic signatures associated with acquisition of chemoresistance we profiled gene expression in DTX-sensitive and -resistant mCRPC cells using RNA sequencing (RNA-seq). PC3 and DU145 cells were selected for DTX resistance and this phenotype was validated by immunoblotting using DTX resistance markers (e.g. clusterin, ABCB1/P-gp, and LEDGF/p75). Overlapping genes differentially regulated in the DTX-sensitive and -resistant cells were ranked by Gene Set Enrichment Analysis (GSEA) and validated to correlate transcript with protein expression. GSEA revealed that genes associated with cancer stem cells (CSC) (e.g., NES, TSPAN8, DPPP, DNAJC12, and MYC) were highly ranked and comprised 70% of the top 25 genes differentially upregulated in the DTX-resistant cells. Established markers of epithelial-to-mesenchymal transition (EMT) and CSCs were used to evaluate the stemness of adherent DTX-resistant cells (2D cultures) and tumorspheres (3D cultures). Increased formation and frequency of cells expressing CSC markers were detected in DTX-resistant cells. DU145-DR cells showed a 2-fold increase in tumorsphere formation and increased DTX resistance compared to DU145-DR 2D cultures. These results demonstrate the induction of a transcriptomic program associated with stemness in mCRPC cells selected for DTX resistance, and strengthen the emerging body of evidence implicating CSCs in this process. In addition, they provide additional candidate genes and molecular pathways for potential therapeutic targeting to overcome DTX resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA