Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(9): e0157623, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39136465

RESUMO

The emergence of drug-resistant Plasmodium falciparum parasites in sub-Saharan Africa will substantially challenge malaria control. Here, we evaluated the frequency of common drug resistance markers among adolescents from Northern Uganda with asymptomatic infections. We used an established amplicon deep sequencing strategy to screen dried blood spot samples collected from 2016 to 2017 during a reported malaria epidemic within the districts of Kitgum and Pader in Northern Uganda. We screened single-nucleotide polymorphisms within: kelch13 (Pfk13), dihydropteroate synthase (Pfdhps), multidrug resistance-1 (Pfmdr1), dihydrofolate reductase (Pfdhfr), and apical membrane antigen (Pfama1) genes. Within the study population, the median age was 15 years (14.3-15.0, 95% CI), and 54.9% (78/142) were Plasmodium positive by 18S rRNA qPCR, which were subsequently targeted for sequencing analysis. We observed a high frequency of resistance markers particularly for sulfadoxine-pyrimethamine (SP), with no wild-type-only parasites observed for Pfdhfr (N51I, C59R, and S108N) and Pfdhps (A437G and K540E) mutations. Within Pfmdr1, mixed infections were common for NF/NY (98.5%). While for artemisinin resistance, in kelch13, there was a high frequency of C469Y (34%). Using the pattern for Pfama1, we found a high level of polygenomic infections with all individuals presenting with complexity of infection greater than 2 with a median of 6.9. The high frequency of the quintuple SP drug-resistant parasites and the C469Y artemisinin resistance-associated mutation in asymptomatic individuals suggests an earlier high prevalence than previously reported from symptomatic malaria surveillance studies (in 2016/2017). Our data demonstrate the urgency for routine genomic surveillance programs throughout Africa and the value of deep sequencing.


Assuntos
Antimaláricos , Infecções Assintomáticas , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Pirimetamina , Sulfadoxina , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Humanos , Uganda/epidemiologia , Adolescente , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Estudos Retrospectivos , Sulfadoxina/farmacologia , Sulfadoxina/uso terapêutico , Resistência a Medicamentos/genética , Feminino , Infecções Assintomáticas/epidemiologia , Masculino , Mutação , Proteínas de Protozoários/genética , Combinação de Medicamentos , Polimorfismo de Nucleotídeo Único/genética , Prevalência , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Tetra-Hidrofolato Desidrogenase/genética
2.
J Infect Dis ; 226(5): 920-927, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35429395

RESUMO

BACKGROUND: Genotyping Plasmodium falciparum subpopulations in malaria infections is an important aspect of malaria molecular epidemiology to understand within-host diversity and the frequency of drug resistance markers. METHODS: We characterized P. falciparum genetic diversity in asymptomatic infections and subsequent first febrile infections using amplicon sequencing (AmpSeq) of ama1 in Coastal Kenya. We also examined temporal changes in haplotype frequencies of mdr1, a drug-resistant marker. RESULTS: We found >60% of the infections were polyclonal (complexity of infection [COI] >1) and there was a reduction in COI over time. Asymptomatic infections had a significantly higher mean COI than febrile infections based on ama1 sequences (2.7 [95% confidence interval {CI}, 2.65-2.77] vs 2.22 [95% CI, 2.17-2.29], respectively). Moreover, an analysis of 30 paired asymptomatic and first febrile infections revealed that many first febrile infections (91%) were due to the presence of new ama1 haplotypes. The mdr1-YY haplotype, associated with chloroquine and amodiaquine resistance, decreased over time, while the NY (wild type) and the NF (modulates response to lumefantrine) haplotypes increased. CONCLUSIONS: This study emphasizes the utility of AmpSeq in characterizing parasite diversity as it can determine relative proportions of clones and detect minority clones. The usefulness of AmpSeq in antimalarial drug resistance surveillance is also highlighted.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Infecções Assintomáticas , Resistência a Medicamentos/genética , Humanos , Malária/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
3.
Antimicrob Agents Chemother ; 66(4): e0194521, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35266823

RESUMO

Molecular surveillance of Plasmodium falciparum parasites is important to track emerging and new mutations and trends in established mutations and should serve as an early warning system for antimalarial resistance. Dried blood spots were obtained from a Plasmodium falciparum malaria survey in school children conducted across eight counties in western Kenya in 2019. Real-time PCR identified 500 P. falciparum-positive samples that were amplified at five drug resistance loci for targeted amplicon deep sequencing (TADS). The absence of important kelch 13 mutations was similar to previous findings in Kenya pre-2019, and low-frequency mutations were observed in codons 569 and 578. The chloroquine resistance transporter gene codons 76 and 145 were wild type, indicating that the parasites were chloroquine and piperaquine sensitive, respectively. The multidrug resistance gene 1 haplotypes based on codons 86, 184, and 199 were predominantly present in mixed infections with haplotypes NYT and NFT, driven by the absence of chloroquine pressure and the use of lumefantrine, respectively. The sulfadoxine-pyrimethamine resistance profile was a "superresistant" combination of triple mutations in both Pfdhfr (51I 59R 108N) and Pfdhps (436H 437G 540E), rendering sulfadoxine-pyrimethamine ineffective. TADS highlighted the low-frequency variants, allowing the early identification of new mutations, Pfmdr1 codon 199S and Pfdhfr codon 85I and emerging 164L mutations. The added value of TADS is its accuracy in identifying mixed-genotype infections and for high-throughput monitoring of antimalarial resistance markers.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Criança , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Códon , Combinação de Medicamentos , Resistência a Medicamentos/genética , Antagonistas do Ácido Fólico/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Quênia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico
4.
Malar J ; 21(1): 192, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725456

RESUMO

BACKGROUND: High levels of genetic diversity are common characteristics of Plasmodium falciparum parasite populations in high malaria transmission regions. There has been a decline in malaria transmission intensity over 12 years of surveillance in the community in Kilifi, Kenya. This study sought to investigate whether there was a corresponding reduction in P. falciparum genetic diversity, using msp2 as a genetic marker. METHODS: Blood samples were obtained from children (< 15 years) enrolled into a cohort with active weekly surveillance between 2007 and 2018 in Kilifi, Kenya. Asymptomatic infections were defined during the annual cross-sectional blood survey and the first-febrile malaria episode was detected during the weekly follow-up. Parasite DNA was extracted and successfully genotyped using allele-specific nested polymerase chain reactions for msp2 and capillary electrophoresis fragment analysis. RESULTS: Based on cross-sectional surveys conducted in 2007-2018, there was a significant reduction in malaria prevalence (16.2-5.5%: P-value < 0.001), however msp2 genetic diversity remained high. A high heterozygosity index (He) (> 0.95) was observed in both asymptomatic infections and febrile malaria over time. About 281 (68.5%) asymptomatic infections were polyclonal (> 2 variants per infection) compared to 46 (56%) polyclonal first-febrile infections. There was significant difference in complexity of infection (COI) between asymptomatic 2.3 [95% confidence interval (CI) 2.2-2.5] and febrile infections 2.0 (95% CI 1.7-2.3) (P = 0.016). Majority of asymptomatic infections (44.2%) carried mixed alleles (i.e., both FC27 and IC/3D7), while FC27 alleles were more frequent (53.3%) among the first-febrile infections. CONCLUSIONS: Plasmodium falciparum infections in Kilifi are still highly diverse and polyclonal, despite the reduction in malaria transmission in the community.


Assuntos
Malária Falciparum , Plasmodium falciparum , Antígenos de Protozoários/genética , Infecções Assintomáticas/epidemiologia , Criança , Estudos Transversais , Febre , Variação Genética , Genótipo , Humanos , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
5.
Malar J ; 20(1): 278, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162366

RESUMO

BACKGROUND: The invasion of the red blood cells by Plasmodium falciparum merozoites involves the interplay of several proteins that are also targets for vaccine development. The proteins PfRh5-PfRipr-PfCyRPA-Pfp113 assemble into a complex at the apical end of the merozoite and are together essential for erythrocyte invasion. They have also been shown to induce neutralizing antibodies and appear to be less polymorphic than other invasion-associated proteins, making them high priority blood-stage vaccine candidates. Using available whole genome sequencing data (WGS) and new capillary sequencing data (CS), this study describes the genetic polymorphism in the Rh5 complex in P. falciparum isolates obtained from Kilifi, Kenya. METHODS: 162 samples collected in 2013 and 2014 were genotyped by capillary sequencing (CS) and re-analysed WGS from 68 culture-adapted P. falciparum samples obtained from a drug trial conducted from 2005 to 2007. The frequency of polymorphisms in the merozoite invasion proteins, PfRh5, PfRipr, PfCyRPA and PfP113 were examined and where possible polymorphisms co-occurring in the same isolates. RESULTS: From a total 70 variants, including 2 indels, 19 SNPs [27.1%] were identified by both CS and WGS, while an additional 15 [21.4%] and 36 [51.4%] SNPs were identified only by either CS or WGS, respectively. All the SNPs identified by CS were non-synonymous, whereas WGS identified 8 synonymous and 47 non-synonymous SNPs. CS identified indels in repeat regions in the p113 gene in codons 275 and 859 that were not identified in the WGS data. The minor allele frequencies of the SNPs ranged between 0.7 and 34.9% for WGS and 1.1-29.6% for CS. Collectively, 12 high frequency SNPs (> 5%) were identified: four in Rh5 codon 147, 148, 203 and 429, two in p113 at codons 7 and 267 and six in Ripr codons 190, 259, 524, 985, 1003 and 1039. CONCLUSION: This study reveals that the majority of the polymorphisms are rare variants and confirms a low level of genetic polymorphisms in all proteins within the Rh5 complex.


Assuntos
Proteínas de Transporte/genética , Família Multigênica , Mutação , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética
6.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31591113

RESUMO

Antimalarial drug resistance is a substantial impediment to malaria control. The spread of resistance has been described using genetic markers which are important epidemiological tools. We carried out a temporal analysis of changes in allele frequencies of 12 drug resistance markers over two decades of changing antimalarial drug policy in Kenya. We did not detect any of the validated kelch 13 (k13) artemisinin resistance markers, nonetheless, a single k13 allele, K189T, was maintained at a stable high frequency (>10%) over time. There was a distinct shift from chloroquine resistant transporter (crt)-76, multi-drug resistant gene 1 (mdr1)-86 and mdr1-1246 chloroquine (CQ) resistance alleles to a 99% prevalence of CQ sensitive alleles in the population, following the withdrawal of CQ from routine use. In contrast, the dihydropteroate synthetase (dhps) double mutant (437G and 540E) associated with sulfadoxine-pyrimethamine (SP) resistance was maintained at a high frequency (>75%), after a change from SP to artemisinin combination therapies (ACTs). The novel cysteine desulfurase (nfs) K65 allele, implicated in resistance to lumefantrine in a West African study, showed a gradual significant decline in allele frequency pre- and post-ACT introduction (from 38% to 20%), suggesting evidence of directional selection in Kenya, potentially not due to lumefantrine. The high frequency of CQ-sensitive parasites circulating in the population suggests that the re-introduction of CQ in combination therapy for the treatment of malaria can be considered in the future. However, the risk of a re-emergence of CQ resistant parasites circulating below detectable levels or being reintroduced from other regions remains.

7.
Malar J ; 17(1): 199, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764419

RESUMO

BACKGROUND: Pyronaridine-artesunate is a novel artemisinin-based combination therapy. The efficacy and safety of pyronaridine-artesunate were compared with artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in children. METHODS: This phase III open-label randomized controlled non-inferiority trial was conducted in Western Kenya. Children aged 6 months to ≤ 12 years with a bodyweight > 5 kg and microscopically confirmed P. falciparum malaria were randomly assigned in a 1:1 ratio to orally receive pyronaridine-artesunate or artemether-lumefantrine, dosed according to bodyweight, for 3 days. RESULTS: Of 197 participants, 101 received pyronaridine-artesunate and 96 received artemether-lumefantrine. The day-28 adequate clinical and parasitological response in the per-protocol population, PCR-corrected for reinfections, was 98.9% (93/94, 95% CI 94.2-99.8) for pyronaridine-artesunate and 96.4% (81/84, 95% CI 90.0-98.8) for artemether-lumefantrine. Pyronaridine-artesunate was found to be non-inferior to artemether-lumefantrine: the treatment difference was 2.5% (95% CI - 2.8 to 9.0). Adverse events occurred in 41.6% (42/101) and 34.4% (33/96) of patients in the pyronaridine-artesunate group and the artemether-lumefantrine group, respectively. No participants were found to have alanine or aspartate aminotransferase levels > 3 times the upper limit of normal. CONCLUSIONS: Pyronaridine-artesunate was well tolerated, efficacious and non-inferior to artemether-lumefantrine for the treatment of uncomplicated P. falciparum malaria in Kenyan children. Results are in line with previous reports and inclusion of pyronaridine-artesunate in paediatric malaria treatment programmes should be considered. This study is registered at clinicaltrials.gov under NCT02411994. Registration date: 8 April 2015. https://clinicaltrials.gov/ct2/show/NCT02411994?term=pyronaridine-artesunate&cond=Malaria&cntry=KE&rank=1.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artesunato/uso terapêutico , Malária Falciparum/tratamento farmacológico , Naftiridinas/uso terapêutico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Quênia , Masculino
8.
Malar J ; 17(1): 223, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866116

RESUMO

BACKGROUND: Artemisinin-based combinations differ in their impact on gametocyte prevalence and density. This study assessed female and male gametocyte dynamics after treating children with uncomplicated Plasmodium falciparum malaria with either pyronaridine-artesunate (PA) or artemether-lumefantrine (AL). METHODS: Kenyan children with uncomplicated Plasmodium falciparum malaria were included and randomly assigned to PA or AL treatment. Filter paper blood samples were collected as a source of RNA for quantitative reverse-transcription PCR (qRT-PCR) and nucleic acid sequence based amplification (QT-NASBA) to detect female gametocytes (targeting Pfs25 mRNA). Male gametocytes were detected by qRT-PCR (targeting PfMGET mRNA). Duration of gametocyte carriage, the female and male gametocyte response and the agreement between qRT-PCR and QT-NASBA were determined. RESULTS: The mean duration of female gametocyte carriage was significantly longer for PA (4.9 days) than for AL (3.8 days) as estimated by QT-NASBA (P = 0.036), but this difference was less clear when determined by Pfs25 qRT-PCR (4.5 days for PA and 3.7 for AL, P = 0.166). qRT-PCR based female gametocyte prevalence decreased from 100% (75/75) at baseline to 6.06% (4/66) at day 14 in the AL group and from 97.7% (83/85) to 13.9% (11/79) in the PA group. Male gametocyte prevalence decreased from 41.3% (31/75) at baseline to 19.7% (13/66) at day 14 in the AL group and from 35.3% (30/85) to 22.8% (18/79) in the PA group. There was good agreement between Pfs25 qRT-PCR and QT-NASBA female gametocyte prevalence (0.85, 95% CI 0.82-0.87). CONCLUSIONS: This study indicates that female gametocyte clearance may be slightly faster after AL compared to PA. Male gametocytes showed similar post-treatment clearance between study arms. Future studies should further address potential differences between the post-treatment transmission potential after PA compared to AL. Trial registration This study is registered at clinicaltrials.gov under NCT02411994. Registration date: 8 April 2015. https://clinicaltrials.gov/ct2/show/NCT02411994?term=pyronaridine-artesunate&cond=Malaria&cntry=KE&rank=1.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artesunato/uso terapêutico , Malária Falciparum/tratamento farmacológico , Naftiridinas/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Quênia , Masculino , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Replicação de Sequência Autossustentável
9.
J Infect Dis ; 216(4): 457-467, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28931236

RESUMO

Background: Single low-dose primaquine (PQ) reduces Plasmodium falciparum infectivity before it impacts gametocyte density. Here, we examined the effect of PQ on gametocyte sex ratio as a possible explanation for this early sterilizing effect. Methods: Quantitative reverse-transcription polymerase chain reaction assays were developed to quantify female gametocytes (targeting Pfs25 messenger RNA [mRNA]) and male gametocytes (targeting Pf3D7_1469900 mRNA) in 2 randomized trials in Kenya and Mali, comparing dihydroartemisinin-piperaquine (DP) alone to DP with PQ. Gametocyte sex ratio was examined in relation to time since treatment and infectivity to mosquitoes. Results: In Kenya, the median proportion of male gametocytes was 0.33 at baseline. Seven days after treatment, gametocyte density was significantly reduced in the DP-PQ arm relative to the DP arm (females: 0.05% [interquartile range {IQR}, 0.0-0.7%] of baseline; males: 3.4% [IQR, 0.4%-32.9%] of baseline; P < .001). Twenty-four hours after treatment, gametocyte sex ratio became male-biased and was not significantly different between the DP and DP-PQ groups. In Mali, there was no significant difference in sex ratio between the DP and DP-PQ groups (>0.125 mg/kg) 48 hours after treatment, and gametocyte sex ratio was not associated with mosquito infection rates. Conclusions: The early sterilizing effects of PQ may not be explained by the preferential clearance of male gametocytes and may be due to an effect on gametocyte fitness.


Assuntos
Antimaláricos/uso terapêutico , Células Germinativas/efeitos dos fármacos , Primaquina/uso terapêutico , Proteínas de Protozoários/genética , Adolescente , Artemisininas/uso terapêutico , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Humanos , Quênia , Masculino , Mali , Plasmodium falciparum , Proteínas de Protozoários/metabolismo , Quinolinas/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tamanho da Amostra
10.
BMC Med ; 15(1): 89, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28449690

RESUMO

BACKGROUND: We aimed to show the non-inferiority of home fortification with a daily dose of 3 mg iron in the form of iron as ferric sodium ethylenediaminetetraacetate (NaFeEDTA) compared with 12.5 mg iron as encapsulated ferrous fumarate in Kenyan children aged 12-36 months. In addition, we updated a recent meta-analysis to assess the efficacy of home fortification with iron-containing powders, with a view to examining diversity in trial results. METHODS: We gave chemoprevention by dihydroartemisinin-piperaquine, albendazole and praziquantel to 338 afebrile children with haemoglobin concentration ≥70 g/L. We randomly allocated them to daily home fortification for 30 days with either placebo, 3 mg iron as NaFeEDTA or 12.5 mg iron as encapsulated ferrous fumarate. We assessed haemoglobin concentration (primary outcome), plasma iron markers, plasma inflammation markers and Plasmodium infection in samples collected at baseline and after 30 days of intervention. We conducted a meta-analysis of randomised controlled trials in pre-school children to assess the effect of home fortification with iron-containing powders on anaemia and haemoglobin concentration at end of intervention. RESULTS: A total of 315 children completed the 30-day intervention period. At baseline, 66.9% of children had inflammation (plasma C-reactive protein concentration >5 mg/L or plasma α 1-acid glycoprotein concentration >1.0 g/L); in those without inflammation, 42.5% were iron deficient. There was no evidence, either in per protocol analysis or intention-to-treat analysis, that home fortification with either of the iron interventions improved haemoglobin concentration, plasma ferritin concentration, plasma transferrin receptor concentration or erythrocyte zinc protoporphyrin-haem ratio. We also found no evidence of effect modification by iron status, anaemia status and inflammation status at baseline. In the meta-analysis, the effect on haemoglobin concentration was highly heterogeneous between trials (I 2: 84.1%; p value for test of heterogeneity: <0.0001). CONCLUSIONS: In this population, home fortification with either 3 mg iron as NaFeEDTA or 12.5 mg iron as encapsulated ferrous fumarate was insufficiently efficacious to assess non-inferiority of 3 mg iron as NaFeEDTA compared to 12.5 mg iron as encapsulated ferrous fumarate. Our finding of heterogeneity between trial results should stimulate subgroup analysis or meta-regression to identify population-specific factors that determine efficacy. TRIAL REGISTRATION: The trial was registered with ClinicalTrials.gov ( NCT02073149 ) on 25 February 2014.


Assuntos
Anemia Ferropriva/prevenção & controle , Compostos Férricos/uso terapêutico , Compostos Ferrosos/uso terapêutico , Alimentos Fortificados , Anemia Ferropriva/sangue , Proteína C-Reativa , Pré-Escolar , Método Duplo-Cego , Ácido Edético/uso terapêutico , Feminino , Ferritinas , Humanos , Lactente , Ferro/sangue , Quênia/epidemiologia , Malária , Masculino
11.
PLoS Med ; 13(4): e1001993, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27071072

RESUMO

BACKGROUND: Malaria transmission is highly heterogeneous, generating malaria hotspots that can fuel malaria transmission across a wider area. Targeting hotspots may represent an efficacious strategy for reducing malaria transmission. We determined the impact of interventions targeted to serologically defined malaria hotspots on malaria transmission both inside hotspots and in surrounding communities. METHODS AND FINDINGS: Twenty-seven serologically defined malaria hotspots were detected in a survey conducted from 24 June to 31 July 2011 that included 17,503 individuals from 3,213 compounds in a 100-km2 area in Rachuonyo South District, Kenya. In a cluster-randomized trial from 22 March to 15 April 2012, we randomly allocated five clusters to hotspot-targeted interventions with larviciding, distribution of long-lasting insecticide-treated nets, indoor residual spraying, and focal mass drug administration (2,082 individuals in 432 compounds); five control clusters received malaria control following Kenyan national policy (2,468 individuals in 512 compounds). Our primary outcome measure was parasite prevalence in evaluation zones up to 500 m outside hotspots, determined by nested PCR (nPCR) at baseline and 8 wk (16 June-6 July 2012) and 16 wk (21 August-10 September 2012) post-intervention by technicians blinded to the intervention arm. Secondary outcome measures were parasite prevalence inside hotpots, parasite prevalence in the evaluation zone as a function of distance from the hotspot boundary, Anopheles mosquito density, mosquito breeding site productivity, malaria incidence by passive case detection, and the safety and acceptability of the interventions. Intervention coverage exceeded 87% for all interventions. Hotspot-targeted interventions did not result in a change in nPCR parasite prevalence outside hotspot boundaries (p ≥ 0.187). We observed an average reduction in nPCR parasite prevalence of 10.2% (95% CI -1.3 to 21.7%) inside hotspots 8 wk post-intervention that was statistically significant after adjustment for covariates (p = 0.024), but not 16 wk post-intervention (p = 0.265). We observed no statistically significant trend in the effect of the intervention on nPCR parasite prevalence in the evaluation zone in relation to distance from the hotspot boundary 8 wk (p = 0.27) or 16 wk post-intervention (p = 0.75). Thirty-six patients with clinical malaria confirmed by rapid diagnostic test could be located to intervention or control clusters, with no apparent difference between the study arms. In intervention clusters we caught an average of 1.14 female anophelines inside hotspots and 0.47 in evaluation zones; in control clusters we caught an average of 0.90 female anophelines inside hotspots and 0.50 in evaluation zones, with no apparent difference between study arms. Our trial was not powered to detect subtle effects of hotspot-targeted interventions nor designed to detect effects of interventions over multiple transmission seasons. CONCLUSIONS: Despite high coverage, the impact of interventions targeting malaria vectors and human infections on nPCR parasite prevalence was modest, transient, and restricted to the targeted hotspot areas. Our findings suggest that transmission may not primarily occur from hotspots to the surrounding areas and that areas with highly heterogeneous but widespread malaria transmission may currently benefit most from an untargeted community-wide approach. Hotspot-targeted approaches may have more validity in settings where human settlement is more nuclear. TRIAL REGISTRATION: ClinicalTrials.gov NCT01575613.


Assuntos
Culicidae/parasitologia , Insetos Vetores/parasitologia , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos/métodos , Plasmodium , Serviços de Saúde Rural , Adolescente , Adulto , Animais , Anticorpos Antiprotozoários/sangue , Criança , Pré-Escolar , Culicidae/crescimento & desenvolvimento , DNA de Protozoário/sangue , DNA de Protozoário/genética , Reservatórios de Doenças , Feminino , Interações Hospedeiro-Parasita , Humanos , Incidência , Insetos Vetores/crescimento & desenvolvimento , Quênia/epidemiologia , Malária/diagnóstico , Malária/epidemiologia , Malária/parasitologia , Masculino , Plasmodium/genética , Plasmodium/crescimento & desenvolvimento , Plasmodium/imunologia , Reação em Cadeia da Polimerase , Densidade Demográfica , Prevalência , Estudos Soroepidemiológicos , Fatores de Tempo , Adulto Jovem
12.
Malar J ; 15: 307, 2016 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-27259286

RESUMO

BACKGROUND: The East African highlands are fringe regions between stable and unstable malaria transmission. What factors contribute to the heterogeneity of malaria exposure on different spatial scales within larger foci has not been extensively studied. In a comprehensive, community-based cross-sectional survey an attempt was made to identify factors that drive the macro- and micro epidemiology of malaria in a fringe region using parasitological and serological outcomes. METHODS: A large cross-sectional survey including 17,503 individuals was conducted across all age groups in a 100 km(2) area in the Western Kenyan highlands of Rachuonyo South district. Households were geo-located and prevalence of malaria parasites and malaria-specific antibodies were determined by PCR and ELISA. Household and individual risk-factors were recorded. Geographical characteristics of the study area were digitally derived using high-resolution satellite images. RESULTS: Malaria antibody prevalence strongly related to altitude (1350-1600 m, p < 0.001). A strong negative association with increasing altitude and PCR parasite prevalence was found. Parasite carriage was detected at all altitudes and in all age groups; 93.2 % (2481/2663) of malaria infections were apparently asymptomatic. Malaria parasite prevalence was associated with age, bed net use, house construction features, altitude and topographical wetness index. Antibody prevalence was associated with all these factors and distance to the nearest water body. CONCLUSION: Altitude was a major driver of malaria transmission in this study area, even across narrow altitude bands. The large proportion of asymptomatic parasite carriers at all altitudes and the age-dependent acquisition of malaria antibodies indicate stable malaria transmission; the strong correlation between current parasite carriage and serological markers of malaria exposure indicate temporal stability of spatially heterogeneous transmission.


Assuntos
Malária/epidemiologia , Topografia Médica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Altitude , Anticorpos Antiprotozoários/sangue , Doenças Assintomáticas/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , DNA de Protozoário/genética , Transmissão de Doença Infecciosa , Ensaio de Imunoadsorção Enzimática , Características da Família , Feminino , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Malária/transmissão , Masculino , Pessoa de Meia-Idade , Plasmodium/genética , Plasmodium/imunologia , Plasmodium/isolamento & purificação , Reação em Cadeia da Polimerase , Prevalência , Fatores de Risco , Análise Espacial , Adulto Jovem
13.
J Infect Dis ; 212(11): 1768-77, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26019285

RESUMO

BACKGROUND: Mass screening and treatment currently fails to identify a considerable fraction of low parasite density infections, while mass treatment exposes many uninfected individuals to antimalarial drugs. Here we test a hybrid approach to screen a sentinel population to identify clusters of subpatent infections in the Kenya highlands with low, heterogeneous malaria transmission. METHODS: Two thousand eighty-two inhabitants were screened for parasitemia by nested polymerase chain reaction (nPCR). Children aged ≤ 15 years and febrile adults were also tested for malaria by rapid diagnostic test (RDT) and served as sentinel members to identify subpatent infections within the household. All parasitemic individuals were assessed for multiplicity of infections by nPCR and gametocyte carriage by nucleic acid sequence-based amplification. RESULTS: Households with RDT-positive individuals in the sentinel population were more likely to have nPCR-positive individuals (odds ratio: 1.71, 95% confidence interval, 1.60-1.84). The sentinel population identified 64.5% (locality range: 31.6%-81.2%) of nPCR-positive households and 77.3% (locality range: 24.2%-91.0%) of nPCR-positive individuals. The sensitivity of the sentinel screening approach was positively associated with transmission intensity (P = .037). CONCLUSIONS: In this low endemic area, a focal screening approach with RDTs prior to the high transmission season was able to identify the majority of the subpatent parasite reservoirs.


Assuntos
Infecções Assintomáticas/epidemiologia , Malária/epidemiologia , Programas de Rastreamento , Parasitemia/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos Transversais , Características da Família , Feminino , Humanos , Lactente , Quênia/epidemiologia , Malária/diagnóstico , Malária/transmissão , Masculino , Pessoa de Meia-Idade , Parasitemia/diagnóstico , Parasitemia/transmissão , Adulto Jovem
14.
Front Genet ; 15: 1470156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39483850

RESUMO

Background: Malaria in pregnancy is a major public health issue, particularly among vulnerable populations in malaria-endemic sub-Saharan African countries. To mitigate its risks, WHO recommends sulphadoxine-pyrimethamine (SP) for chemoprevention and artemisinin-based combination therapy (ACT) to treat uncomplicated Plasmodium falciparum malaria. These interventions have helped to alleviate the risk associated with malaria in pregnancy; however, in the context of the emergence of SP- and ACT-resistant P. falciparum, maintained efficacy is under threat. Molecular surveillance is a reliable tool to monitor the emergence of resistance where molecular markers are known. Thus, the objective of the study was to use a multiplexed amplicon Oxford Nanopore sequencing approach to assess the molecular markers for antimalarial resistance among pregnant women in Nigeria. Methods: Dried blood spots (DBS) were collected from pregnant women who received IPTp-SP at the enrollment and follow-up visits. P. falciparum genomic DNA was extracted by the Chelex® method and Pf18S qPCR was used to detect parasite DNA in each sample. With nested PCR assays, fragments of Pfdhps, Pfdhfr, Pfmdr1, Pfcrt, Pfk13 and Pfama1 genes were amplified and multiplexed amplicon-based sequencing was conducted on the minION Oxford Nanopore Technology. Result: In total, 251 pregnant women were enrolled in the study and 457 DBS samples were collected. P. falciparum genomic DNA was detected in 12% (56/457) of the samples, 31 at baseline and the remaining during the follow-up visits. Pfama1, pfk13, Pfdhps, Pfdhfr, Pfmdr1 and Pfcrt were successfully sequenced in a single run. Notably, k13 artemisinin resistance mutations were absent, the frequencies of Pfdhfr and Pfdhps SP resistance haplotypes, IRN for pyrimethamine resistance and ISGKA/IAGKA associated with sulphadoxine resistance were 82% (36/44) and 64% (27/42), respectively, and the Pfcrt CVIET resistant haplotype was at approximately 22% (7/32). Conclusion and recommendations: Here a multiplexed amplicon-based ONT assay established that triple mutant Pfdfhr-IRN, double mutant Pfdhps-SG haplotypes and the chloroquine sensitive strain were prevalent among pregnant women in Nigeria.

15.
Malar J ; 12: 272, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23914905

RESUMO

BACKGROUND: Informing and evaluating malaria control efforts relies on knowledge of local transmission dynamics. Serological and molecular tools have demonstrated great sensitivity to quantify transmission intensity in low endemic settings where the sensitivity of traditional methods is limited. Filter paper blood spots are commonly used a source of both DNA and antibodies. To enhance the operational practicability of malaria surveys, a method is presented for combined DNA extraction and antibody elution. METHODS: Filter paper blood spots were collected as part of a large cross-sectional survey in the Kenyan highlands. DNA was extracted using a saponin/chelex method. The eluate of the first wash during the DNA extraction process was used for antibody detection and compared with previously validated antibody elution procedures. Antibody elution efficiency was assessed by total IgG ELISA for malaria antigens apical membrane antigen-1 (AMA-1) and merozoite-surface protein-1 (MSP-142). The sensitivity of nested 18S rRNA and cytochrome b PCR assays and the impact of doubling filter paper material for PCR sensitivity were determined. The distribution of cell material and antibodies throughout filter paper blood spots were examined using luminescent and fluorescent reporter assays. RESULTS: Antibody levels measured after the combined antibody/DNA extraction technique were strongly correlated to those measured after standard antibody elution (p < 0.0001). Antibody levels for both AMA-1 and MSP-142 were generally slightly lower (11.3-21.4%) but age-seroprevalence patterns were indistinguishable. The proportion of parasite positive samples ranged from 12.9% to 19.2% in the different PCR assays. Despite strong agreement between outcomes of different PCR assays, none of the assays detected all parasite-positive individuals. For all assays doubling filter paper material for DNA extraction increased sensitivity. The concentration of cell and antibody material was not homogenously distributed throughout blood spots. CONCLUSION: Combined DNA extraction and antibody elution is an operationally attractive approach for high throughput assessment of cumulative malaria exposure and current infection prevalence in endemic settings. Estimates of antibody prevalence are unaffected by the combined extraction and elution procedure. The choice of target gene and the amount and source of filter paper material for DNA extraction can have a marked impact on PCR sensitivity.


Assuntos
Anticorpos Antiprotozoários/sangue , Sangue/imunologia , Sangue/parasitologia , Técnicas de Laboratório Clínico/métodos , DNA de Protozoário/sangue , Malária/diagnóstico , Manejo de Espécimes/métodos , Adolescente , Adulto , Anticorpos Antiprotozoários/isolamento & purificação , Criança , Pré-Escolar , DNA de Protozoário/isolamento & purificação , Métodos Epidemiológicos , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/isolamento & purificação , Lactente , Quênia , Malária/transmissão , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , RNA Ribossômico 18S/genética , Sensibilidade e Especificidade , Adulto Jovem
16.
Front Epidemiol ; 3: 1083114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38455911

RESUMO

There is a growing concern for malaria control in the Horn of Africa region due to the spread and rise in the frequency of Plasmodium falciparum Histidine-rich Protein (hrp) 2 and 3 deletions. Parasites containing these gene deletions escape detection by the major PfHRP2-based rapid diagnostic test. In this study, the presence of Pfhrp2/3 deletions was examined in uncomplicated malaria patients in Kilifi County, from a region of moderate-high malaria transmission. 345 samples were collected from the Pingilikani dispensary in 2019/2020 during routine malaria care for patients attending this primary health care facility. The Carestart™ RDT and microscopy were used to test for malaria. In addition, qPCR was used to confirm the presence of parasites. In total, 249 individuals tested positive for malaria by RDT, 242 by qPCR, and 170 by microscopy. 11 samples that were RDT-negative and microscopy positive and 25 samples that were qPCR-positive and RDT-negative were considered false negative tests and were examined further for Pfhrp2/3 deletions. Pfhrp2/3-negative PCR samples were further genotyped at the dihydrofolate reductase (Pfdhfr) gene which served to further confirm that parasite DNA was present in the samples. The 242 qPCR-positive samples (confirmed the presence of DNA) were also selected for Pfhrp2/3 genotyping. To determine the frequency of false negative results in low parasitemia samples, the RDT- and qPCR-negative samples were genotyped for Pfdhfr before testing for Pfhrp2/3. There were no Pfhrp2 and Pfhrp3 negative but positive for dhfr parasites in the 11 (RDT negative and microscopy positive) and 25 samples (qPCR-positive and RDT-negative). In the larger qPCR-positive sample set, only 5 samples (2.1%) were negative for both hrp2 and hrp3, but positive for dhfr. Of the 5 samples, there were 4 with more than 100 parasites/µl, suggesting true hrp2/3 deletions. These findings revealed that there is currently a low prevalence of Pfhrp2 and Pfhrp3 deletions in the health facility in Kilifi. However, routine monitoring in other primary health care facilities across the different malaria endemicities in Kenya is urgently required to ensure appropriate use of malaria RDTs.

17.
PLoS One ; 18(2): e0280685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36780469

RESUMO

Coronavirus Disease-2019 tests require a Nasopharyngeal (NP) and/or Oropharyngeal (OP) specimen from the upper airway, from which virus RNA is extracted and detected through quantitative reverse transcription-Polymerase Chain Reaction (qRT-PCR). The viability of the virus is maintained after collection by storing the NP/OP swabs in Viral Transport Media (VTM). We evaluated the performance of four transport media: locally manufactured ("REVITAL") Viral Transport Media (RVTM), Standard Universal Transport Media (SUTM), PBS and 0.9% (w/v) NaCl (normal saline). We used laboratory cultured virus to evaluate: i) viral recovery and maintaining integrity at different time periods and temperatures; ii) stability in yielding detectable RNA consistently for all time points and conditions; and iii) their overall accuracy. Four vials of SARS-CoV-2 cultured virus (2 high and 2 low concentration samples) and 1 negative control sample were prepared for each media type (SUTM, RVTM, PBS and normal saline) and stored at the following temperatures, -80°C, 4°C, 25°C and 37°C for 7 days. Viral RNA extractions and qRT-PCR were performed at 1, 2, 3, 4 and 7 days after inoculation with the cultured virus to assess virus stability and viral recovery. Ct values fell over time at 25°C and 37°C, but normal saline, PBS, RVTM and SUTM all showed comparable performance in maintaining virus integrity and stability allowing for the detection of SARS-CoV-2 RNA. Overall, this study demonstrated that normal saline, PBS and the locally manufactured VTM can be used for COVID-19 sample collection and testing, thus expanding the range of SARS-CoV-2 viral collection media.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Solução Salina , RNA Viral/genética , RNA Viral/análise , Manejo de Espécimes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Teste para COVID-19
18.
Wellcome Open Res ; 7: 207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-39364258

RESUMO

Background: The focus on P. falciparum diagnosis has led to an underestimation of the global burden of malaria resulting from neglected Plasmodium species. However, there is still scarce data on the prevalence of P. ovale species (spp) globally. To address this knowledge gap, data collected from cross-sectional studies in Kilifi county were used to: 1) determine the prevalence of P. ovale spp infections; and 2) determine the sensitivity of different diagnostic assays in detecting P. ovale spp infections. Methods: A total of 531 individuals were sampled across three study sites in Kilifi County, Kenya between 2009 and 2020. Blood smears were prepared from peripheral blood and screened for Plasmodium parasite stages using light microscopy. Molecular screening involved DNA extraction of dried blood spots and blood in ethylenediaminetetraacetic acid, polymerase chain reaction (PCR) using primers targeting the 18 small ribosomal subunit and sequencing. Results: Microscopy screening revealed that the most prevalent species was P. falciparum (32.0%) followed by P. malariae (9.0%) and then P. ovale spp( 1.5%). PCR screening identified additional P. ovale spp positives cases. Overall PCR results indicate that43 (8.1%) out of the 531 individuals harbored P. ovale spp infection with the highest prevalence reported in the tertiary health facility, (14.6%, 95% CI 8-23.6%), followed by the primary health facility (8.3%, 95% CI 5.4-11.9%), and the community from a cross-sectional blood survey, (3.6%, 95% CI 1.2-8.2%). Microscopy screening for P. ovale spp had a low sensitivity of 7% (95% CI 1-19-30%) and a high specificity of 99% (95% CI 98-100%). Sequencing results confirmed the presence of P.ovale curtisi. Conclusions: This study provides baseline data for P.ovale spp surveillance in Kilifi County, primarily using PCR to improve diagnosis. These results suggest that malaria elimination and eradication efforts should not only concentrate on P. falciparum but should embrace a holistic approach towards elimination of all Plasmodium spp.

19.
Wellcome Open Res ; 7: 95, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37456906

RESUMO

Introduction: Antimalarial therapeutic efficacy studies are routinely conducted in malaria-endemic countries to assess the effectiveness of antimalarial treatment strategies. Targeted amplicon sequencing (AmpSeq) uniquely identifies and quantifies genetically distinct parasites within an infection. In this study, AmpSeq of Plasmodium falciparum apical membrane antigen 1 ( ama1), and multidrug resistance gene 1 ( mdr1), were used to characterise the complexity of infection (COI) and drug-resistance genotypes, respectively. Methods: P. falciparum-positive samples were obtained from a triple artemisinin combination therapy clinical trial conducted in 30 children under 13 years of age between 2018 and 2019 in Kilifi, Kenya. Nine of the 30 participants presented with recurrent parasitemia from day 26 (624h) onwards. The ama1 and mdr1 genes were amplified and sequenced, while msp1, msp2 and glurp data were obtained from the original clinical study. Results: The COI was comparable between ama1 and msp1, msp2 and glurp; overall, ama1 detected more microhaplotypes. Based on ama1, a stable number of microhaplotypes were detected throughout treatment until day 3. Additionally, a recrudescent infection was identified with an ama1 microhaplotype initially observed at 30h and later in an unscheduled follow-up visit. Using the relative frequencies of ama1 microhaplotypes and parasitemia, we identified a fast (<1h) and slow (>5h) clearing microhaplotype. As expected, only two mdr1 microhaplotypes (NF and NY) were identified based on the combination of amino acid polymorphisms at codons 86 and 184. Conclusions: This study highlights AmpSeq as a tool for highly-resolution tracking of parasite microhaplotypes throughout treatment and can detect variation in microhaplotype clearance estimates. AmpSeq can also identify slow-clearing microhaplotypes, a potential early sign of selection during treatment. Consequently, AmpSeq has the capability of improving the discriminatory power to distinguish recrudescences from reinfections accurately.

20.
Int J Parasitol Drugs Drug Resist ; 16: 155-161, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34146993

RESUMO

Artemisinin resistance (AR) emerged in South East Asia 13 years ago and the identification of the resistance conferring molecular marker, Plasmodium falciparum Kelch 13 (Pfk13), 7 years ago has provided an invaluable tool for monitoring AR in malaria endemic countries. Molecular Pfk13 surveillance revealed the resistance foci in the Greater Mekong Subregion, an independent emergence in Guyana, South America, and a low frequency of mutations in Africa. The recent identification of the R561H Pfk13 AR associated mutation in Tanzania, Uganda and in Rwanda, where it has been associated with delayed parasite clearance, should be a concern for the continent. In this review, we provide a summary of Pfk13 resistance associated propeller domain mutation frequencies across Africa from 2012 to 2020, to examine how many other countries have identified these mutations. Only four African countries reported a recent identification of the M476I, P553L, R561H, P574L, C580Y and A675V Pfk13 mutations at low frequencies and with no reports of clinical treatment failure, except for Rwanda. These mutations present a threat to malaria control across the continent, since the greatest burden of malaria remains in Africa. A rise in the frequency of these mutations and their spread would reverse the gains made in the reduction of malaria over the last 20 years, given the lack of new antimalarial treatments in the event artemisinin-based combination therapies fail. The review highlights the frequency of Pfk13 propeller domain mutations across Africa, providing an up-to-date perspective of Pfk13 mutations, and appeals for an urgent and concerted effort to monitoring antimalarial resistance markers in Africa and the efficacy of antimalarials by re-establishing sentinel surveillance systems.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , África/epidemiologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Resistência a Medicamentos/genética , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Mutação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA