Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Infect Dis ; 70(11): 2306-2313, 2020 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31544211

RESUMO

BACKGROUND: Monovalent rotavirus vaccine, Rotarix (GlaxoSmithKline), was introduced in Kenya in July 2014 and is recommended to infants as oral doses at ages 6 and 10 weeks. A multisite study was established in 2 population-based surveillance sites to evaluate vaccine impact on the incidence of rotavirus-associated hospitalizations (RVHs). METHODS: Hospital-based surveillance was conducted from January 2010 to June 2017 for acute diarrhea hospitalizations among children aged <5 years in 2 health facilities in Kenya. A controlled interrupted time-series analysis was undertaken to compare RVH pre- and post-vaccine introduction using rotavirus-negative cases as a control series. The change in incidence post-vaccine introduction was estimated from a negative binomial model that adjusted for secular trend, seasonality, and multiple health worker industrial actions (strikes). RESULTS: Between January 2010 and June 2017 there were 1513 and 1652 diarrhea hospitalizations in Kilifi and Siaya; among those tested for rotavirus, 28% (315/1142) and 23% (197/877) were positive, respectively. There was a 57% (95% confidence interval [CI], 8-80%) reduction in RVHs observed in the first year post-vaccine introduction in Kilifi and a 59% (95% CI, 20-79%) reduction in Siaya. In the second year, RVHs decreased further at both sites, 80% (95% CI, 46-93%) reduction in Kilifi and 82% reduction in Siaya (95% CI. 61-92%); this reduction was sustained at both sites into the third year. CONCLUSIONS: A substantial reduction in RVHs and all-cause diarrhea was observed in 2 demographic surveillance sites in Kenya within 3 years of vaccine introduction.


Assuntos
Gastroenterite , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Criança , Pré-Escolar , Diarreia/epidemiologia , Diarreia/prevenção & controle , Hospitalização , Hospitais , Humanos , Lactente , Quênia/epidemiologia , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle
2.
Clin Infect Dis ; 70(11): 2298-2305, 2020 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31326980

RESUMO

BACKGROUND: Rotavirus remains a leading cause of pediatric diarrheal illness and death worldwide. Data on rotavirus vaccine effectiveness in sub-Saharan Africa are limited. Kenya introduced monovalent rotavirus vaccine (RV1) in July 2014. We assessed RV1 effectiveness against rotavirus-associated hospitalization in Kenyan children. METHODS: Between July 2014 and December 2017, we conducted surveillance for acute gastroenteritis (AGE) in 3 Kenyan hospitals. From children age-eligible for ≥1 RV1 dose, with stool tested for rotavirus and confirmed vaccination history we compared RV1 coverage among rotavirus positive (cases) vs rotavirus negative (controls) using multivariable logistic regression and calculated effectiveness based on adjusted odds ratio. RESULTS: Among 677 eligible children, 110 (16%) were rotavirus positive. Vaccination data were available for 91 (83%) cases; 51 (56%) had 2 RV1 doses and 33 (36%) 0 doses. Among 567 controls, 418 (74%) had vaccination data; 308 (74%) had 2 doses and 69 (16%) 0 doses. Overall 2-dose effectiveness was 64% (95% confidence interval [CI], 35%-80%); effectiveness was 67% (95% CI, 30%-84%) for children aged <12 months and 72% (95% CI, 10%-91%) for children aged ≥12 months. Significant effectiveness was seen in children with normal weight for age, length/height for age and weight for length/height; however, no protection was found among underweight, stunted, or wasted children. CONCLUSIONS: RV1 in the Kenyan immunization program provides significant protection against rotavirus-associated hospitalization which persisted beyond infancy. Malnutrition appears to diminish vaccine effectiveness. Efforts to improve rotavirus uptake and nutritional status are important to maximize vaccine benefit.


Assuntos
Gastroenterite , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Criança , Gastroenterite/epidemiologia , Gastroenterite/prevenção & controle , Hospitalização , Humanos , Lactente , Quênia/epidemiologia , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , Vacinação , Vacinas Atenuadas
3.
BMC Infect Dis ; 20(1): 504, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660437

RESUMO

BACKGROUND: Kenya introduced the monovalent G1P [8] Rotarix® vaccine into the infant immunization schedule in July 2014. We examined trends in rotavirus group A (RVA) genotype distribution pre- (January 2010-June 2014) and post- (July 2014-December 2018) RVA vaccine introduction. METHODS: Stool samples were collected from children aged < 13 years from four surveillance sites across Kenya: Kilifi County Hospital, Tabitha Clinic Nairobi, Lwak Mission Hospital, and Siaya County Referral Hospital (children aged < 5 years only). Samples were screened for RVA using enzyme linked immunosorbent assay (ELISA) and VP7 and VP4 genes sequenced to infer genotypes. RESULTS: We genotyped 614 samples in pre-vaccine and 261 in post-vaccine introduction periods. During the pre-vaccine introduction period, the most frequent RVA genotypes were G1P [8] (45.8%), G8P [4] (15.8%), G9P [8] (13.2%), G2P [4] (7.0%) and G3P [6] (3.1%). In the post-vaccine introduction period, the most frequent genotypes were G1P [8] (52.1%), G2P [4] (20.7%) and G3P [8] (16.1%). Predominant genotypes varied by year and site in both pre and post-vaccine periods. Temporal genotype patterns showed an increase in prevalence of vaccine heterotypic genotypes, such as the commonly DS-1-like G2P [4] (7.0 to 20.7%, P < .001) and G3P [8] (1.3 to 16.1%, P < .001) genotypes in the post-vaccine introduction period. Additionally, we observed a decline in prevalence of genotypes G8P [4] (15.8 to 0.4%, P < .001) and G9P [8] (13.2 to 5.4%, P < .001) in the post-vaccine introduction period. Phylogenetic analysis of genotype G1P [8], revealed circulation of strains of lineages G1-I, G1-II and P [8]-1, P [8]-III and P [8]-IV. Considerable genetic diversity was observed between the pre and post-vaccine strains, evidenced by distinct clusters. CONCLUSION: Genotype prevalence varied from before to after vaccine introduction. Such observations emphasize the need for long-term surveillance to monitor vaccine impact. These changes may represent natural secular variation or possible immuno-epidemiological changes arising from the introduction of the vaccine. Full genome sequencing could provide insights into post-vaccine evolutionary pressures and antigenic diversity.


Assuntos
Genótipo , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/uso terapêutico , Rotavirus/genética , Rotavirus/imunologia , Vacinação , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Fezes/virologia , Feminino , Gastroenterite/etiologia , Humanos , Esquemas de Imunização , Lactente , Quênia/epidemiologia , Masculino , Filogenia , Prevalência , Infecções por Rotavirus/virologia , Vacinas contra Rotavirus/efeitos adversos , Vacinas contra Rotavirus/imunologia , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico
4.
J Infect Dis ; 219(7): 1049-1057, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30576538

RESUMO

We report on infection patterns in 5 households (78 participants) delineating the natural history of human rhinovirus (HRV). Nasopharyngeal collections were obtained every 3-4 days irrespective of symptoms, over a 6-month period, with molecular screening for HRV and typing by sequencing VP4/VP2 junction. Overall, 311/3468 (8.9%) collections were HRV positive: 256 were classified into 3 species: 104 (40.6%) HRV-A; 14 (5.5%) HRV-B, and 138 (53.9%) HRV-C. Twenty-six known HRV types (13 HRV-A, 3 HRV-B, and 10 HRV-C) were identified (A75, C1, and C35 being most frequent). We observed continuous invasion and temporal clustering of HRV types in households (range 5-13 over 6 months). Intrahousehold transmission was independent of clinical status but influenced by age. Most (89.0%) of HRV infection episodes were limited to <14 days. Individual repeat infections were frequent (range 1-7 over 6 months), decreasing with age, and almost invariably heterotypic, indicative of lasting type-specific immunity and low cross-type protection.


Assuntos
Resfriado Comum/transmissão , Nasofaringe/virologia , Infecções por Picornaviridae/transmissão , Rhinovirus/classificação , Rhinovirus/isolamento & purificação , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Resfriado Comum/epidemiologia , Características da Família , Humanos , Lactente , Quênia/epidemiologia , Infecções por Picornaviridae/epidemiologia , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Recidiva , Fatores de Tempo , Adulto Jovem
5.
BMC Infect Dis ; 19(1): 757, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31470805

RESUMO

BACKGROUND: Human metapneumovirus (HMPV) is an important respiratory pathogen that causes seasonal epidemics of acute respiratory illness and contributes significantly to childhood pneumonia. Current knowledge and understanding on its patterns of spread, prevalence and persistence in communities in low resource settings is limited. METHODS: We present findings of a molecular-epidemiological analysis of nasal samples from children < 5 years of age admitted with syndromic pneumonia between 2007 and 2016 to Kilifi County Hospital, coastal Kenya. HMPV infection was detected using real-time RT-PCR and positives sequenced in the fusion (F) and attachment (G) genes followed by phylogenetic analysis. The association between disease severity and HMPV subgroup was assessed using Fisher's exact test. RESULTS: Over 10 years, 274/6756 (4.1%) samples screened were HMPV positive. Annual prevalence fluctuated between years ranging 1.2 to 8.7% and lowest in the recent years (2014-2016). HMPV detections were most frequent between October of one year to April of the following year. Genotyping was successful for 205/274 (74.8%) positives revealing clades A2b (41.0%) and A2c (10.7%), and subgroups B1 (23.4%) and B2 (24.9%). The dominance patterns were: clade A2b between 2007 and 11, subgroup B1 between 2012 and 14, and clade A2c in more recent epidemics. Subgroup B2 viruses were present in all the years. Temporal phylogenetic clustering within the subgroups for both local and global sequence data was seen. Subgroups occurring in each epidemic season were comprised of multiple variants. Pneumonia severity did not vary by subgroup (p = 0.264). In both the F and G gene, the sequenced regions were found to be predominantly under purifying selection. CONCLUSION: Subgroup patterns from this rural African setting temporally map with global strain distribution, suggesting a well-mixed global virus transmission pool of HMPV. Persistence in the local community is characterized by repeated introductions of HMPV variants from the global pool. The factors underlying the declining prevalence of HMPV in this population should be investigated.


Assuntos
Metapneumovirus/classificação , Metapneumovirus/isolamento & purificação , Infecções por Paramyxoviridae , Pneumonia , Idade de Início , Pré-Escolar , Epidemias , Feminino , Genótipo , Hospitais Pediátricos/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Masculino , Metapneumovirus/genética , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/virologia , Admissão do Paciente/estatística & dados numéricos , Filogenia , Pneumonia/epidemiologia , Pneumonia/virologia , Vigilância da População , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano
6.
J Infect Dis ; 217(11): 1728-1739, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29741740

RESUMO

Background: Human coronavirus NL63 (HCoV-NL63) is a globally endemic pathogen causing mild and severe respiratory tract infections with reinfections occurring repeatedly throughout a lifetime. Methods: Nasal samples were collected in coastal Kenya through community-based and hospital-based surveillance. HCoV-NL63 was detected with multiplex real-time reverse transcription PCR, and positive samples were targeted for nucleotide sequencing of the spike (S) protein. Additionally, paired samples from 25 individuals with evidence of repeat HCoV-NL63 infection were selected for whole-genome virus sequencing. Results: HCoV-NL63 was detected in 1.3% (75/5573) of child pneumonia admissions. Two HCoV-NL63 genotypes circulated in Kilifi between 2008 and 2014. Full genome sequences formed a monophyletic clade closely related to contemporary HCoV-NL63 from other global locations. An unexpected pattern of repeat infections was observed with some individuals showing higher viral titers during their second infection. Similar patterns for 2 other endemic coronaviruses, HCoV-229E and HCoV-OC43, were observed. Repeat infections by HCoV-NL63 were not accompanied by detectable genotype switching. Conclusions: In this coastal Kenya setting, HCoV-NL63 exhibited low prevalence in hospital pediatric pneumonia admissions. Clade persistence with low genetic diversity suggest limited immune selection, and absence of detectable clade switching in reinfections indicates initial exposure was insufficient to elicit a protective immune response.


Assuntos
Infecções por Coronavirus/epidemiologia , Coronavirus Humano NL63/genética , Adolescente , Adulto , Evolução Biológica , Criança , Pré-Escolar , Infecções por Coronavirus/virologia , Coronavirus Humano OC43/genética , Feminino , Hospitalização , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Masculino , Epidemiologia Molecular , Filogenia , Prevalência , Estudos Prospectivos , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Adulto Jovem
7.
Sci Rep ; 12(1): 202, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997042

RESUMO

Pneumonia remains a major cause of mortality and morbidity. Most molecular diagnoses of viruses rely on polymerase chain reaction (PCR) assays that however can fail due to primer mismatch. We investigated the performance of routine virus diagnostics in Kilifi, Kenya, using random-primed viral next generation sequencing (viral NGS) on respiratory samples which tested negative for the common viral respiratory pathogens by a local standard diagnostic panel. Among 95 hospitalised pneumonia patients and 95 household-cohort individuals, analysis of viral NGS identified at least one respiratory-associated virus in 35 (37%) and 23 (24%) samples, respectively. The majority (66%; 42/64) belonged to the Picornaviridae family. The NGS data analysis identified a number of viruses that were missed by the diagnostic panel (rhinovirus, human metapneumovirus, respiratory syncytial virus and parainfluenza virus), and these failures could be attributed to PCR primer/probe binding site mismatches. Unexpected viruses identified included parvovirus B19, enterovirus D68, coxsackievirus A16 and A24 and rubella virus. The regular application of such viral NGS could help evaluate assay performance, identify molecular causes of missed diagnoses and reveal gaps in the respiratory virus set used for local screening assays. The results can provide actionable information to improve the local pneumonia diagnostics and reveal locally important viral pathogens.


Assuntos
Genoma Viral , Metagenoma , Metagenômica , Pneumonia Viral/diagnóstico , Sistema Respiratório/virologia , Vírus/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Quênia , Diagnóstico Ausente , Filogenia , Pneumonia Viral/virologia , Valor Preditivo dos Testes , Vírus/isolamento & purificação
8.
Wellcome Open Res ; 6: 27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957334

RESUMO

Background: The natural history and transmission patterns of endemic human coronaviruses are of increased interest following the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Methods: In rural Kenya 483 individuals from 47 households were followed for six months (2009-10) with nasopharyngeal swabs collected twice weekly regardless of symptoms. A total of 16,918 swabs were tested for human coronavirus (hCoV) OC43, NL63 and 229E and other respiratory viruses using polymerase chain reaction. Results: From 346 (71.6%) household members, 629 hCoV infection episodes were defined, with 36.3% being symptomatic: varying by hCoV type and decreasing with age. Symptomatic episodes (aHR=0.6 (95% CI:0.5-0.8) or those with elevated peak viral load (medium aHR=0.4 (0.3-0.6); high aHR=0.31 (0.2-0.4)) had longer viral shedding compared to their respective counterparts. Homologous reinfections were observed in 99 (19.9%) of 497 first infections. School-age children (55%) were the most common index cases with those having medium (aOR=5.3 (2.3 - 12.0)) or high (8.1 (2.9 - 22.5)) peak viral load most often generating secondary cases. Conclusion: Household coronavirus infection was common, frequently asymptomatic and mostly introduced by school-age children. Secondary transmission was influenced by viral load of index cases. Homologous-type reinfection was common. These data may be insightful for SARS-CoV-2.

9.
Wellcome Open Res ; 5: 63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102784

RESUMO

Background: Respiratory viruses are primary agents of respiratory tract diseases. Knowledge on the types and frequency of respiratory viruses affecting school-children is important in determining the role of schools in transmission in the community and identifying targets for interventions. Methods: We conducted a one-year (term-time) surveillance of respiratory viruses in a rural primary school in Kilifi County, coastal Kenya between May 2017 and April 2018. A sample of 60 students with symptoms of ARI were targeted for nasopharyngeal swab (NPS) collection weekly.  Swabs were screened for 15 respiratory virus targets using real time PCR diagnostics. Data from respiratory virus surveillance at the local primary healthcare facility was used for comparison. Results: Overall, 469 students aged 2-19 years were followed up for 220 days. A total of 1726 samples were collected from 325 symptomatic students; median age of 7 years (IQR 5-11). At least one virus target was detected in 384 (22%) of the samples with a frequency of 288 (16.7%) for rhinovirus, 47 (2.7%) parainfluenza virus, 35 (2.0%) coronavirus, 15 (0.9%) adenovirus, 11 (0.6%) respiratory syncytial virus (RSV) and 5 (0.3%) influenza virus.  The proportion of virus positive samples was higher among lower grades compared to upper grades (25.9% vs 17.5% respectively; χ 2 = 17.2, P -value <0.001). Individual virus target frequencies did not differ by age, sex, grade, school term or class size. Rhinovirus was predominant in both the school and outpatient setting. Conclusion: Multiple respiratory viruses circulated in this rural school population.  Rhinovirus was dominant in both the school and outpatient setting and RSV was of notably low frequency in the school. The role of school children in transmitting viruses to the household setting is still unclear and further studies linking molecular data to contact patterns between the school children and their households are required.

10.
Wellcome Open Res ; 5: 150, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32995556

RESUMO

Introduction: Human coronaviruses (HCoVs) circulate endemically in human populations, often with seasonal variation. We describe the long-term patterns of paediatric disease associated with three of these viruses, HCoV-NL63, OC43 and 229E, in coastal Kenya. Methods: Continuous surveillance of pneumonia admissions was conducted at the Kilifi county hospital (KCH) located in the northern coastal region of Kenya. Children aged <5 years admitted to KCH with clinically defined syndromic severe or very severe pneumonia were recruited. Respiratory samples were taken and tested for 15 virus targets, using real-time polymerase chain reaction. Unadjusted odds ratios were used to estimate the association between demographic and clinical characteristics and HCoV positivity. Results: From 2007 to 2019, we observed 11,445 pneumonia admissions, of which 314 (3.9%) tested positive for at least one HCoV type. There were 129 (41.1%) OC43, 99 (31.5%) 229E, 74 (23.6%) NL63 positive cases and 12 (3.8%) cases of HCoV to HCoV coinfection.  Among HCoV positive cases, 47% (n=147) were coinfected with other respiratory virus pathogens. The majority of HCoV cases were among children aged <1 year (66%, n=208), though there was no age-dependence in the proportion testing positive. HCoV-OC43 was predominant of the three HCoV types throughout the surveillance period. Evidence for seasonality was not identified. Conclusions: Overall, 4% of paediatric pneumonia admissions were associated with three endemic HCoVs, with a high proportion of cases co-occurring with another respiratory virus, with no clear seasonal pattern, and with the age-distribution of cases following that of pneumonia admissions (i.e. highest in infants). These observations suggest, at most, a small severe disease contribution of endemic HCoVs in this tropical setting and offer insight into the potential future burden and epidemiological characteristics of SARS-CoV-2.

11.
Influenza Other Respir Viruses ; 14(3): 320-330, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943817

RESUMO

BACKGROUND: Influenza viruses evolve rapidly and undergo immune driven selection, especially in the hemagglutinin (HA) protein. We report amino acid changes affecting antigenic epitopes and receptor-binding sites of A(H3N2) viruses circulating in Kilifi, Kenya, from 2009 to 2017. METHODS: Next-generation sequencing (NGS) was used to generate A(H3N2) virus genomic data from influenza-positive specimens collected from hospital admissions and health facility outpatients presenting with acute respiratory illness to health facilities within the Kilifi Health and Demographic Surveillance System. Full-length HA sequences were utilized to characterize A(H3N2) virus genetic and antigenic changes. RESULTS: From 186 (90 inpatient and 96 outpatient) influenza A virus-positive specimens processed, 101 A(H3N2) virus whole genomes were obtained. Among viruses identified in inpatient specimens from 2009 to 2015, divergence of circulating A(H3N2) viruses from the vaccine strains A/Perth/16/2009, A/Texas/50/2012, and A/Switzerland/9715293/2013 formed 6 genetic clades (A/Victoria/208/2009-like, 3B, 3C, 3C.2a, 4, and 7). Among viruses identified in outpatient specimens from 2015 to 2017, divergence of circulating A(H3N2) viruses from vaccine strain A/Hong Kong/4801/2014 formed clade 3C.2a, subclades 3C.2a2 and 3C.2a3, and subgroup 3C.2a1b. Several amino acid substitutions were associated with the continued genetic evolution of A(H3N2) strains in circulation. CONCLUSIONS: Our results suggest continuing evolution of currently circulating A(H3N2) viruses in Kilifi, coastal Kenya and suggest the need for continuous genetic and antigenic viral surveillance of circulating seasonal influenza viruses with broad geographic representation to facilitate prompt and efficient selection of influenza strains for inclusion in future influenza vaccines.


Assuntos
Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/virologia , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Substituição de Aminoácidos , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Lactente , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/epidemiologia , Quênia/epidemiologia , Masculino , Pessoa de Meia-Idade , Filogenia , Alinhamento de Sequência , Adulto Jovem
12.
Open Forum Infect Dis ; 7(10): ofaa385, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33094115

RESUMO

BACKGROUND: Human rhinovirus (HRV) is the most common cause of the common cold but may also lead to more severe respiratory illness in vulnerable populations. The epidemiology and genetic diversity of HRV within a school setting have not been previously described. The objective of this study was to characterize HRV molecular epidemiology in a primary school in a rural location of Kenya. METHODS: Between May 2017 and April 2018, over 3 school terms, we collected 1859 nasopharyngeal swabs (NPS) from pupils and teachers with symptoms of acute respiratory infection in a public primary school in Kilifi County, coastal Kenya. The samples were tested for HRV using real-time reverse transcription polymerase chain reaction. HRV-positive samples were sequenced in the VP4/VP2 coding region for species and genotype classification. RESULTS: A total of 307 NPS (16.4%) from 164 individuals were HRV positive, and 253 (82.4%) were successfully sequenced. The proportion of HRV in the lower primary classes was higher (19.8%) than upper primary classes (12.2%; P < .001). HRV-A was the most common species (134/253; 53.0%), followed by HRV-C (73/253; 28.9%) and HRV-B (46/253; 18.2%). Phylogenetic analysis identified 47 HRV genotypes. The most common genotypes were A2 and B70. Numerous (up to 22 in 1 school term) genotypes circulated simultaneously, there was no individual re-infection with the same genotype, and no genotype was detected in all 3 school terms. CONCLUSIONS: HRV was frequently detected among school-going children with mild acute respiratory illness symptoms, particularly in the younger age groups (<5-year-olds). Multiple HRV introductions were observed that were characterized by considerable genotype diversity.

13.
Virus Evol ; 6(2): veaa045, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33747542

RESUMO

The genomic epidemiology of influenza B virus (IBV) remains understudied in Africa despite significance to design of effective local and global control strategies. We undertook surveillance throughout 2016 in coastal Kenya, recruiting individuals presenting with acute respiratory illness at nine outpatient health facilities (any age) or admitted to the Kilifi County Hospital (<5 years old). Whole genomes were sequenced for a selected 111 positives; 94 (84.7%) of B/Victoria lineage and 17 (15.3%) of B/Yamagata lineage. Inter-lineage reassortment was detected in ten viruses; nine with B/Yamagata backbone but B/Victoria NA and NP segments and one with a B/Victoria backbone but B/Yamagata PB2, PB1, PA, and MP segments. Five phylogenomic clusters were identified among the sequenced viruses; (i), pure B/Victoria clade 1A (n = 93, 83.8%), (ii), reassortant B/Victoria clade 1A (n = 1, 0.9%), (iii), pure B/Yamagata clade 2 (n = 2, 1.8%), (iv), pure B/Yamagata clade 3 (n = 6, 5.4%), and (v), reassortant B/Yamagata clade 3 (n = 9, 8.1%). Using divergence dates and clustering patterns in the presence of global background sequences, we counted up to twenty-nine independent IBV strain introductions into the study area (∼900 km2) in 2016. Local viruses, including the reassortant B/Yamagata strains, clustered closely with viruses from neighbouring Tanzania and Uganda. Our study demonstrated that genomic analysis provides a clearer picture of locally circulating IBV diversity. The high number of IBV introductions highlights the challenge in controlling local influenza epidemics by targeted approaches, for example, sub-population vaccination or patient quarantine. The finding of divergent IBV strains co-circulating within a single season emphasises why broad immunity vaccines are the most ideal for influenza control in Kenya.

14.
Wellcome Open Res ; 3: 150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31020048

RESUMO

Background: Kenya introduced the monovalent Rotarix® rotavirus group A (RVA) vaccine nationally in mid-2014.  Long-term surveillance data is important prior to wide-scale vaccine use to assess the impact on disease and to investigate the occurrence of heterotypic strains arising through immune selection. This report presents baseline data on RVA genotype circulation patterns and intra-genotype genetic diversity over a 7-year period in the pre-vaccine era in Kilifi, Kenya, from 2002 to 2004 and from 2010 to 2013. Methods: A total of 745 RVA strains identified in children admitted with acute gastroenteritis to a referral hospital in Coastal Kenya, were sequenced using the di-deoxy sequencing method in the VP4 and VP7 genomic segments (encoding P and G proteins, respectively). Sequencing successfully generated 569 (76%) and 572 (77%) consensus sequences for the VP4 and VP7 genes respectively. G and P genotypes were determined by use of BLAST and the online RotaC v2 RVA classification tool. Results: The most common GP combination was G1P[8] (51%), similar to the Rotarix® strain, followed by G9P[8] (15%) , G8P[4] (14%) and G2P[4] (5%).  Unusual GP combinations-G1P[4], G2P[8], G3P[4,6], G8P[8,14], and G12P[4,6,8]-were observed at frequencies of <5%. Phylogenetic analysis showed that the infections were caused by both locally persistent strains as evidenced by divergence of local strains occurring over multiple seasons from the global ones, and newly introduced strains, which were closely related to global strains. The circulating RVA diversity showed temporal fluctuations both season by season and over the longer-term. None of the unusual strains increased in frequency over the observation period.   Conclusions: The circulating RVA diversity showed temporal fluctuations with several unusual strains recorded, which rarely caused major outbreaks.  These data will be useful in interpreting genotype patterns observed in the region during the vaccine era.

15.
Wellcome Open Res ; 3: 128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483602

RESUMO

Background: Human rhinovirus (HRV) is the predominant cause of upper respiratory tract infections, resulting in a significant public health burden. The virus circulates as many different types (168), each generating strong homologous, but weak heterotypic, immunity. The influence of these features on transmission patterns of HRV in the community is understudied. Methods: Nasopharyngeal swabs were collected from patients with symptoms of acute respiratory infection (ARI) at nine out-patient facilities across a Health and Demographic Surveillance System between December 2015 and November 2016. HRV was diagnosed by real-time RT-PCR, and the VP4/VP2 genomic region of the positive samples sequenced. Phylogenetic analysis was used to determine the HRV types. Classification models and G-test statistic were used to investigate HRV type spatial distribution. Demographic characteristics and clinical features of ARI were also compared. Results: Of 5,744 NPS samples collected, HRV was detected in 1057 (18.4%), of which 817 (77.3%) were successfully sequenced. HRV species A, B and C were identified in 360 (44.1%), 67 (8.2%) and 390 (47.7%) samples, respectively. In total, 87 types were determined: 39, 10 and 38 occurred within species A, B and C, respectively. HRV types presented heterogeneous temporal patterns of persistence. Spatially, identical types occurred over a wide distance at similar times, but there was statistically significant evidence for clustering of types between health facilities in close proximity or linked by major road networks. Conclusion: This study records a high prevalence of HRV in out-patient presentations exhibiting high type diversity. Patterns of occurrence suggest frequent and independent community invasion of different types. Temporal differences of persistence between types may reflect variation in type-specific population immunity. Spatial patterns suggest either rapid spread or multiple invasions of the same type, but evidence of similar types amongst close health facilities, or along road systems, indicate type partitioning structured by local spread.

16.
J Clin Virol ; 88: 21-25, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28107671

RESUMO

BACKGROUND: Direct immuno-fluorescence test (IFAT) and multiplex real-time RT-PCR have been central to RSV diagnosis in Kilifi, Kenya. Recently, these two methods showed discrepancies with an increasing number of PCR undetectable RSV-B viruses. OBJECTIVES: Establish if mismatches in the primer and probe binding sites could have reduced real-time RT-PCR sensitivity. STUDY DESIGN: Nucleoprotein (N) and glycoprotein (G) genes were sequenced for real-time RT-PCR positive and negative samples. Primer and probe binding regions in N gene were checked for mismatches and phylogenetic analyses done to determine molecular epidemiology of these viruses. New primers and probe were designed and tested on the previously real-time RT-PCR negative samples. RESULTS: N gene sequences revealed 3 different mismatches in the probe target site of PCR negative, IFAT positive viruses. The primers target sites had no mismatches. Phylogenetic analysis of N and G genes showed that real-time RT-PCR positive and negative samples fell into distinct clades. Newly designed primers-probe pair improved detection and recovered previous PCR undetectable viruses. CONCLUSIONS: An emerging RSV-B variant is undetectable by a quite widely used real-time RT-PCR assay due to polymorphisms that influence probe hybridization affecting PCR accuracy.


Assuntos
Variação Genética , Técnicas de Diagnóstico Molecular/métodos , Sondas de Oligonucleotídeos/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Infecções por Vírus Respiratório Sincicial/diagnóstico , Vírus Sinciciais Respiratórios/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sítios de Ligação , Primers do DNA/genética , Reações Falso-Negativas , Humanos , Quênia , Nucleoproteínas/genética , RNA Viral/genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA , Proteínas Virais de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA