Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Surg Oncol ; 20(1): 43, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193605

RESUMO

BACKGROUND: The operative results of different approaches for the laparoscopic intersphincteric resection (LAISR) of low rectal cancer vary, and the patient characteristics associated with the best outcomes for each procedure have not been reported. We compared the efficacy of different approaches for LAISR of low rectal cancer and discussed the surgical indications for each approach. METHODS: We retrospectively reviewed data from 235 patients with low rectal cancer treated via LAISR from October 2010 to September 2016. Patients underwent either the transabdominal approach for ISR (TAISR, n = 142), the transabdominal perineal approach for ISR (TPAISR, n = 57), or the transanal pull-through approach for ISR (PAISR, n = 36). RESULTS: The PAISR and TAISR groups exhibited shorter operation times and less intraoperative blood loss than the TPAISR group. The anastomotic distance was shorter in the PAISR and TPAISR groups than in the TAISR group. No differences in the ability to perform radical resection, overall complications, postoperative recovery, Wexner score recorded 12 months after ostomy closure, 3-year disease-free survival, local recurrence-free survival, distant metastasis-free survival, or overall survival (OS) were observed among the three groups. CONCLUSIONS: TAISR, TPAISR, and PAISR have unique advantages and do not differ in terms of operation safety, patient outcomes, or anal function. TPAISR requires a longer time to complete and is associated with more bleeding and a slower recovery of anal function. PAISR should be considered when TAISR cannot ensure a negative distal margin and the tumor and BMI are relatively small; otherwise, TPAISR is required.


Assuntos
Laparoscopia , Neoplasias Retais , Canal Anal/patologia , Canal Anal/cirurgia , Humanos , Laparoscopia/métodos , Neoplasias Retais/patologia , Neoplasias Retais/cirurgia , Estudos Retrospectivos , Resultado do Tratamento
2.
Nano Lett ; 19(12): 9051-9061, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31680526

RESUMO

Conventional cryopreservation of mammalian cells requires the use of toxic organic solvents (e.g., dimethyl sulfoxide) as cryoprotectants. Consequently, the cryopreserved cells must undergo a tedious washing procedure to remove the organic solvents for their further applications in cell-based medicine, and many of the precious cells may be lost or killed during the procedure. Trehalose has been explored as a nontoxic alternative to traditional cryoprotectants. However, mammalian cells do not synthesize trehalose or express trehalose transporters in their membranes, and the lack of an approach for the efficient intracellular delivery of trehalose has been a major hurdle for its use in cell cryopreservation. In this study, a cold-responsive polymer (poly(N-isopropylacrylamide-co-butyl acrylate)) is utilized to synthesize nanoparticles for the encapsulation and intracellular delivery of trehalose. The trehalose-laden nanoparticles can be efficiently taken up by mammalian cells. The nanoparticles quickly and irreversibly disassemble upon cold treatment, enabling the controlled and rapid release of trehalose from the nanoparticles inside cells. The latter is confirmed by an evident increase in cell volume upon cold treatment. This rapid cold-triggered intracellular release of trehalose is crucial to developing a fast protocol to cryopreserve cells using trehalose. Cells with intracellular trehalose delivered using the nanoparticles show comparable postcryopreservation viability compared to that of cells treated with DMSO, eliminating the need for the tedious and cell-damaging washing procedure required for using the DMSO-cryopreserved cells in vivo. This cold-responsive nanoparticle may greatly facilitate the use of trehalose as a nontoxic cryoprotectant for banking cells and tissues to meet their high demand by modern cell-based medicine.


Assuntos
Temperatura Baixa , Criopreservação , Portadores de Fármacos , Nanopartículas/química , Trealose , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Trealose/química , Trealose/farmacocinética , Trealose/farmacologia
3.
Nanomedicine ; 21: 102042, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31247311

RESUMO

Targeted, biocompatible, and synergistic "all in one" systems should be designed to combat the heterogeneity of cancer. In this study, we constructed a dual function nanosystem, copper sulfide nanoplatform loaded with the chemotherapeutic drug docetaxel wrapped by a conjugated polymer-peptide for targeted chemo-phototherapy. The nanoconstruct has been successfully designed with a size of 186.1 ±â€¯5.2 nm, a polydispersity index of 0.18 ±â€¯0.01, and zeta potential of -16.4 ±â€¯0.1 mV. The enhanced uptake and near-infrared-responsive behavior of the nanosystem resulted in efficient drug release, photothermal ablation, effective cytotoxic activity, and potentiated reactive oxygen species generation. The induction of apoptotic markers, enhanced accumulation in the tumor site, and maximum tumor growth inhibition were seen during in vivo studies compared to non-targeted nanoformulations and free drug. Cumulatively, our results indicate that, with low systemic toxicity and better biocompatibility, this nanoconstruct could provide a promising strategy for treating prostate cancer.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Polímeros/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Cobre/química , Doxorrubicina/química , Liberação Controlada de Fármacos/efeitos da radiação , Humanos , Hipertermia Induzida , Masculino , Nanopartículas/química , Peptídeos/química , Peptídeos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Fototerapia , Polímeros/química , Polímeros/efeitos da radiação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/química , Receptores de Somatostatina/genética , Somatostatina/análogos & derivados , Somatostatina/química , Somatostatina/farmacologia , Sulfetos/química
4.
bioRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38617341

RESUMO

Host recognition and immune-mediated foreign body response (FBR) to biomaterials can adversely affect the functionality of implanted materials. To identify key targets underlying the generation of FBR, here we perform analysis of microRNAs (miR) and mRNAs responses to implanted biomaterials. We found that (a) miR-146a levels inversely affect macrophage accumulation, foreign body giant cell (FBGC) formation, and fibrosis in a murine implant model; (b) macrophage-derived miR-146a is a crucial regulator of the FBR and FBGC formation, as confirmed by global and cell-specific knockout of miR-146a; (c) miR-146a modulates genes related to inflammation, fibrosis, and mechanosensing; (d) miR-146a modulates tissue stiffness near the implant during FBR; and (e) miR-146a is linked to F-actin production and cellular traction force induction, which are vital for FBGC formation. These novel findings suggest that targeting macrophage miR-146a could be a selective strategy to inhibit FBR, potentially improving the biocompatibility of biomaterials.

5.
Acta Biomater ; 168: 286-297, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451661

RESUMO

Ovarian follicles develop in a highly regulated mechanical microenvironment and disruptions to the microenvironment may cause infertility. However, the viscoelastic properties of the ovarian tissue are not well studied. Here, we characterize both the elastic and viscoelastic properties of ovarian tissue from both reproductively older and younger domestic cats using atomic force microscopy (AFM) indentation and viscoelastic models of stress relaxation. Importantly, our analyses reveal the apparent elastic modulus obtained from the conventional AFM indentation measurement is significantly higher than the intrinsic elastic modulus and insignificantly different from the equivalent elastic modulus that is the summation of the intrinsic elastic modulus and the viscoelastic contribution to modulus at time 0. Interestingly, the ovarian cortex of both reproductive age groups has a higher apparent/intrinsic modulus than that of the medulla. Furthermore, two different kinetics of stress relaxation are identified with rate constants of ∼1 s and ∼20-40 s, respectively. Moreover, the rate constant of the slow kinetics is significantly different between the cortex and medulla in the reproductively older ovaries. Finally, these mechanical heterogeneities appear to follow the heterogeneous distribution of hyaluronic acid (HA) in the ovary. These findings may be invaluable to the development of biomimetic follicle culture for treating infertility. STATEMENT OF SIGNIFICANCE: This study investigates not only elastic but also the viscoelastic heterogeneity in both reproductively younger and older ovarian tissues for the first time. Further, by combining AFM indentation measurement and viscoelastic modeling, we show the apparent elastic modulus conventionally reported in the literature for AFM indentation measurement is the summation of the intrinsic elastic modulus and a significant viscoelastic contribution to the modulus at time 0. This is an important consideration for others who use this method to quantify biomaterial properties. In addition, the possible connection between the mechanical and compositional heterogeneities is explored. These findings may be invaluable for designing biomaterials to recapitulate the mechanical environment of the ovary and possibly many other organs for biomimetic tissue engineering.


Assuntos
Módulo de Elasticidade , Feminino , Animais , Gatos , Microscopia de Força Atômica/métodos
6.
Front Genet ; 14: 1265137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842645

RESUMO

Background: The pathogenic genes of colorectal cancer (CRC) have not yet been fully elucidated, and there is currently a lack of effective therapeutic targets. This study used bioinformatics methods to explore and experimentally validate the most valuable biomarkers for colorectal cancer and further investigate their potential as targets. Methods: We analyzed differentially expressed genes (DEGs) based on the Gene Expression Omnibus (GEO) dataset and screened out hub genes. ROC curve and univariate Cox analysis of The Cancer Genome Atlas (TCGA) dataset revealed the most diagnostically and prognostically valuable genes. Immunohistochemistry (IHC) experiments were then conducted to validate the expression level of these selected genes in colorectal cancer. Gene set enrichment analysis (GSEA) was performed to evaluate the enriched signaling pathways associated with the gene. Using the CIBERSORT algorithm in R software, we analyzed the immune infiltrating cell abundance in both high and low gene expression groups and examined the gene's correlation with immune cells and immune checkpoints. Additionally, we performed drug sensitivity analysis utilizing the DepMap database, and explored the correlation between gene expression levels and ferroptosis based on the The Cancer Genome Atlas dataset. Results: The study identified a total of 159 DEGs, including 7 hub genes: SPP1, MMP1, CXCL8, CXCL1, TIMP1, MMP3, and CXCL10. Further analysis revealed TIMP1 as the most valuable diagnostic and prognostic biomarker for colorectal cancer, with IHC experiments verifying its high expression. Additionally, GSEA results showed that the high TIMP1 expression group was involved in many cancer signaling pathways. Analysis of the TCGA database revealed a positive correlation between TIMP1 expression and infiltration of macrophages (M0, M1, M2) and neutrophils, as well as the expression of immune checkpoint genes, including CTLA-4 and HAVCR2. Drug sensitivity analysis, conducted using the DepMap database, revealed that colorectal cancer cell lines exhibiting elevated levels of TIMP1 expression were more responsive to certain drugs, such as CC-90003, Pitavastatin, Atuveciclib, and CT7001, compared to those with low levels of TIMP1. Furthermore, TIMP1 expression was positively correlated with that of ferroptosis-related genes, such as GPX4 and HSPA5. Conclusion: TIMP1 can be used as a biomarker for colorectal cancer and is associated with the immunological microenvironment, drug sensitivity, and ferroptosis inhibition in this disease.

7.
Nat Commun ; 14(1): 392, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693842

RESUMO

Cancer immunotherapy that deploys the host's immune system to recognize and attack tumors, is a promising strategy for cancer treatment. However, its efficacy is greatly restricted by the immunosuppressive (i.e., immunologically cold) tumor microenvironment (TME). Here, we report an in-situ cryo-immune engineering (ICIE) strategy for turning the TME from immunologically "cold" into "hot". In particular, after the ICIE treatment, the ratio of the CD8+ cytotoxic T cells to the immunosuppressive regulatory T cells is increased by more than 100 times in not only the primary tumors with cryosurgery but also distant tumors without freezing. This is achieved by combining cryosurgery that causes "frostbite" of tumor with cold-responsive nanoparticles that not only target tumor but also rapidly release both anticancer drug and PD-L1 silencing siRNA specifically into the cytosol upon cryosurgery. This ICIE treatment leads to potent immunogenic cell death, which promotes maturation of dendritic cells and activation of CD8+ cytotoxic T cells as well as memory T cells to kill not only primary but also distant/metastatic breast tumors in female mice (i.e., the abscopal effect). Collectively, ICIE may enable an efficient and durable way to leverage the immune system for combating cancer and its metastasis.


Assuntos
Antineoplásicos , Crioterapia , Imunoterapia , Neoplasias , Microambiente Tumoral , Animais , Feminino , Camundongos , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Imunoterapia/métodos , Nanotecnologia/métodos , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Crioterapia/métodos
8.
Bioact Mater ; 9: 508-522, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34786523

RESUMO

Cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) are valuable for the understanding/treatment of the deadly heart diseases and their drug screening. However, the very much needed homogeneous 3D cardiac differentiation of human iPSCs is still challenging. Here, it is discovered surprisingly that Rock inhibitor (RI), used ubiquitously to improve the survival/yield of human iPSCs, induces early gastrulation-like change to human iPSCs in 3D culture and may cause their heterogeneous differentiation into all the three germ layers (i.e., ectoderm, mesoderm, and endoderm) at the commonly used concentration (10 µM). This greatly compromises the capacity of human iPSCs for homogeneous 3D cardiac differentiation. By reducing the RI to 1 µM for 3D culture, the human iPSCs retain high pluripotency/quality in inner cell mass-like solid 3D spheroids. Consequently, the beating efficiency of 3D cardiac differentiation can be improved to more than 95 % in ~7 days (compared to less than ~50 % in 14 days for the 10 µM RI condition). Furthermore, the outset beating time (OBT) of all resultant cardiac spheroids (CSs) is synchronized within only 1 day and they form a synchronously beating 3D construct after 5-day culture in gelatin methacrylol (GelMA) hydrogel, showing high homogeneity (in terms of the OBT) in functional maturity of the CSs. Moreover, the resultant cardiomyocytes are of high quality with key functional ultrastructures and highly responsive to cardiac drugs. These discoveries may greatly facilitate the utilization of human iPSCs for understanding and treating heart diseases.

9.
ACS Nano ; 16(7): 11374-11391, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35797466

RESUMO

The circulating tumor cells (CTCs, the root cause of cancer metastasis and poor cancer prognosis) are very difficult to culture for scale-up in vitro, which has hampered their use in cancer research/prognosis and patient-specific therapeutic development. Herein, we report a robust electromicrofluidic chip for not only efficient capture of heterogeneous (EpCAM+ and CD44+) CTCs with high purity but also glutathione-controlled gentle release of the CTCs with high efficiency and viability. This is enabled by coating the polydimethylsiloxane (PDMS) surface in the device with a 10 nm gold layer through a 4 nm titanium coupling layer, for convenient PEGylation and linkage of capture antibodies via the thiol-gold chemistry. Surprisingly, the percentage of EpCAM+ mammary CTCs can be as low as ∼35% (∼70% on average), showing that the commonly used approach of capturing CTCs with EpCAM alone may miss many EpCAM- CTCs. Furthermore, the CD44+ CTCs can be cultured to form 3D spheroids efficiently for scale-up. In contrast, the CTCs captured with EpCAM alone are poor in proliferation in vitro, consistent with the literature. By capture of the CTC heterogeneity, the percentage of stage IV patients whose CTCs can be successfully cultured/scaled up is improved from 12.5% to 68.8%. These findings demonstrate that the common practice of CTC capture with EpCAM alone misses the CTC heterogeneity including the critical CD44+ CTCs. This study may be valuable to the procurement and scale-up of heterogeneous CTCs, to facilitate the understanding of cancer metastasis and the development of cancer metastasis-targeted personalized cancer therapies conveniently via the minimally invasive liquid/blood biopsy.


Assuntos
Células Neoplásicas Circulantes , Titânio , Humanos , Molécula de Adesão da Célula Epitelial , Ouro , Linhagem Celular Tumoral , Células Neoplásicas Circulantes/patologia , Dimetilpolisiloxanos , Glutationa , Polietilenoglicóis
10.
Bioact Mater ; 16: 346-358, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35386332

RESUMO

The conventional approach for fabricating polydimethylsiloxane (PDMS) microfluidic devices is a lengthy and inconvenient procedure and may require a clean-room microfabrication facility often not readily available. Furthermore, living cells can't survive the oxygen-plasma and high-temperature-baking treatments required for covalent bonding to assemble multiple PDMS parts into a leak-free device, and it is difficult to disassemble the devices because of the irreversible covalent bonding. As a result, seeding/loading cells into and retrieving cells from the devices are challenging. Here, we discovered that decreasing the curing agent for crosslinking the PDMS prepolymer increases the noncovalent binding energy of the resultant PDMS surfaces without plasma or any other treatment. This enables convenient fabrication of leak-free microfluidic devices by noncovalent binding for various biomedical applications that require high pressure/flow rates and/or long-term cell culture, by simply hand-pressing the PDMS parts without plasma or any other treatment to bind/assemble. With this method, multiple types of cells can be conveniently loaded into specific areas of the PDMS parts before assembly and due to the reversible nature of the noncovalent bonding, the assembled device can be easily disassembled by hand peeling for retrieving cells. Combining with 3D printers that are widely available for making masters to eliminate the need of photolithography, this facile yet rigorous fabrication approach is much faster and more convenient for making PDMS microfluidic devices than the conventional oxygen plasma-baking-based irreversible covalent bonding method.

11.
Nano Today ; 432022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35251293

RESUMO

Colon and rectal cancers are the leading causes of cancer-related deaths in the United States and effective targeted therapies are in need for treating them. Our genomic analyses show hemizygous deletion of TP53, an important tumor suppressor gene, is highly frequent in both cancers, and the 5-year survival of patients with the more prevalent colon cancer is significantly reduced in the patients with the cancer harboring such deletion, although such reduction is not observed for rectal cancer. Unfortunately, direct targeting TP53 has been unsuccessful for cancer therapy. Interestingly, POLR2A, a gene essential for cell survival and proliferation, is almost always deleted together with TP53 in colon and rectal cancers. Therefore, RNA interference (RNAi) with small interfering RNAs (siRNAs) to precisely target/inhibit POLR2A may be an effective strategy for selectively killing cancer cells with TP53 deficiency. However, the difficulty of delivering siRNAs specifically into the cytosol where they perform their function, is a major barrier for siRNA-based therapies. Here, metformin bicarbonate (MetC) is synthesized to develop pH-responsive MetC-nanoparticles with a unique "bomb" for effective cytosolic delivery of POLR2A siRNA, which greatly facilitates its endo/lysosomal escape into the cytosol and augments its therapeutic efficacy of cancer harboring TP53 deficiency. Moreover, the MetC-based nanoparticles without functional siRNA show notable therapeutic effect with no evident toxicity or immunogenicity.

12.
Bioact Mater ; 6(12): 4377-4388, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33997514

RESUMO

Human induced pluripotent stem cells (hiPSCs) possess tremendous potential for tissue regeneration and banking hiPSCs by cryopreservation for their ready availability is crucial to their widespread use. However, contemporary methods for hiPSC cryopreservation are associated with both limited cell survival and high concentration of toxic cryoprotectants and/or serum. The latter may cause spontaneous differentiation and/or introduce xenogeneic factors, which may compromise the quality of hiPSCs. Here, sand from nature is discovered to be capable of seeding ice above -10 °C, which enables cryopreservation of hiPSCs with no serum, much-reduced cryoprotectant, and high cell survival. Furthermore, the cryopreserved hiPSCs retain high pluripotency and functions judged by their pluripotency marker expression, cell cycle analysis, and capability of differentiation into the three germ layers. This unique sand-mediated cryopreservation method may greatly facilitate the convenient and ready availability of high-quality hiPSCs and probably many other types of cells/tissues for the emerging cell-based translational medicine.

13.
Int J Pharm ; 605: 120816, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34161810

RESUMO

Anticancer regimens have been substantially enriched through monoclonal antibodies targeting immune checkpoints, programmed cell death-1/programmed cell death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen-4. Inconsistent clinical efficacy after solo immunotherapy may be compensated by nanotechnology-driven combination therapy. We loaded human serum albumin (HSA) nanoparticles with paclitaxel (PTX) via nanoparticle albumin-bound technology and pooled them with anti-PD-L1 monoclonal antibody through a pH-sensitive linker for targeting and immune response activation. Our tests demonstrated satisfactory preparation of paclitaxel-loaded, PD-L1-targeted albumin nanoparticles (PD-L1/PTX@HSA). They had small particle size (~200 nm) and polydispersity index (~0.12) and successfully incorporated each constituent. Relative to normal physiological pH, the formulation exhibited higher drug-release profiles favoring cancer cell-targeted release at low pH. Modifying nanoparticles with programmed cell death-ligand 1 increased cancer cell internalization in vitro and tumor accumulation in vivo in comparison with non-PD-L1-modified nanoparticles. PD-L1/PTX@HSA constructed by nanoparticle albumin-bound technology displayed successful tumor inhibition efficacy both in vitro and in vivo. There was successful effector T-cell infiltration, immunosuppressive programmed cell death-ligand 1, and regulatory T-cell suppression because of cytotoxic T-lymphocyte antigen-4 synergy. Moreover, PD-L1/PTX@HSA had low organ toxicity. Hence, the anti-tumor immune responses of PD-L1/PTX@HSA combined with chemotherapy and cytotoxic T-lymphocyte antigen-4 is a potential anti-tumor strategy for improving quantitative and qualitative clinical efficacy.


Assuntos
Nanopartículas , Albuminas , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Humanos , Imunoterapia
14.
Biomaterials ; 269: 120677, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33503557

RESUMO

Senescent cells drive atherosclerosis at all stages and contribute to cardiovascular disease. However, the markers in these senescent aortic plaques have not been well studied, creating a huge obstacle in the exploration of a precise and efficient system for atherosclerosis treatment. Recently, CD9 has been found to induce cellular senescence and aggravated atherosclerotic plaque formation in apolipoprotein E knockout (ApoE-/-) mice. In the present study, this result has been leveraged to develop CD9 antibody-modified, hyaluronic acid-coated mesoporous silica nanoparticles with a hyaluronidase-responsive drug release profile. In invitro models of senescent foamy macrophages and senescent endothelial cells stimulated with oxidized high-density-lipoprotein, the CD9 antibody-modified mesoporous silica nanoparticles exhibit high cellular uptake; reduce the reactive oxygen species level, high-density lipoprotein oxidation, and production of TNF-α and IL-6; and attenuate the senescence process, contributing to improved cell viability. In vivo experiment demonstrated that these nanoparticles can successfully target the senescent lesion areas, deliver the anti-senescence drug rosuvastatin to the senescent atherosclerotic plaques (mainly endothelial cells and macrophages), and alleviate the progression of atherosclerosis in ApoE-/- mice. By providing deep insight regarding the markers in senescent atherosclerotic plaque and developing a nano-system targeting this lesion area, the study proposes a novel and an accurate therapeutic approach for mitigating atherosclerosis through senescent cell clearance.


Assuntos
Aterosclerose , Células Endoteliais , Macrófagos , Nanopartículas , Placa Aterosclerótica , Animais , Aorta , Aterosclerose/tratamento farmacológico , Modelos Animais de Doenças , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/tratamento farmacológico , Dióxido de Silício
15.
Nanomicro Lett ; 12(1): 90, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-34138119

RESUMO

Because of enhanced efficacy and lower side effects, cancer immunotherapies have recently been extensively investigated in clinical trials to overcome the limitations of conventional cancer monotherapies. Although engineering attempts have been made to build nanosystems even including stimulus nanomaterials for the efficient delivery of antigens, adjuvants, or anticancer drugs to improve immunogenic cancer cell death, this requires huge R&D efforts and investment for clinically relevant findings to be approved for translation of the nanosystems. To this end, in this study, an air-liquid two-phase electrospray was developed for stable bubble pressing under a balance between mechanical and electrical parameters of the spray to continuously produce biomimetic nanosystems consisting of only clinically relevant compounds [paclitaxel-loaded fake blood cell Eudragit particle (Eu-FBCP/PTX)] to provide a conceptual leap for the timely development of translatable chemo-immunotherapeutic nanosystems. This was pursued as the efficacy of systems for delivering anticancer agents that has been mainly influenced by nanosystem shape because of its relevance to transporting behavior to organs, blood circulation, and cell-membrane interactions. The resulting Eu-FBCP/PTX nanosystems exhibiting phagocytic and micropinocytic uptake behaviors can confer better efficacy in chemo-immunotherapeutics in the absence and presence of anti-PD-L1 antibodies than similar sized PTX-loaded spherical Eu particles (Eu-s/PTX).

16.
Expert Opin Drug Deliv ; 17(3): 423-434, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028805

RESUMO

Background: Phytosterols significantly reduce the risk of cancer by directly inhibiting tumor growth, inducing apoptosis, and inhibiting tumor metastasis. Stigmasterol (STS), a phytosterol, exhibits anticancer effects against various cancers, including breast cancer. Chemotherapeutics, including doxorubicin (DOX), might act synergistically with phytosterol against the proliferation and metastasis of breast cancer. Although such compounds can show potential anticancer activity, their combined effect with suitable formulation has not investigated yet.Methods: Hyaluronic acid (HA)-modified PEGylated DOX-STS loaded phyto-liposome was fabricated via a thin-film hydration method. The prepared phyto-liposome was optimized with regards to its physicochemical and other properties. Further, in vitro and in vivo study was carried out in breast cancer cells expressing a different level of CD44 receptors.Results: The particle size of prepared HA-DOX-STS-lipo was 173.9 ± 2.4 nm, and showed pH-depended DOX release, favoring the effective tumor targetability. The in vitro anticancer activity of HA-DOX-STS-lipo was significantly enhanced in MDA-MB-231, CD44-overexpressing cells relative to MCF-7 cells demonstrating HA-mediated targeting effect. HA-DOX-STS-lipo accumulated more and increased antitumor efficacy in the MDA-MB-231 xenograft tumor model expressing high levels of CD44, suggesting the potential of carrier system toward CD44-overexpressing tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/análogos & derivados , Fitosteróis/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Lipossomos , Células MCF-7 , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Acta Biomater ; 115: 371-382, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32798721

RESUMO

The therapeutic efficacy of current cancer vaccines is far from optimal, mainly because of insufficient induction of antigen-specific T cells and because tumor cells can hijack immunosuppressive mechanisms to evade the immune responses. Generating specific, robust, and long-term immune responses against cancer cells and the attenuating of immunosuppressive factors are critical for effective cancer vaccination. Recently, the engineering of exosomes specifically bind to T cells, and then stimulating tumor-specific T-cell immune responses has emerged as a potential alternative strategy for cancer vaccination. In this study, we generated a bifunctional exosome combining the strategy of vaccination and checkpoint blockade. Exosomes prepared from Ovalbumin (OVA)-pulsed, activated dendritic cells were modified with anti-CTLA-4 antibody (EXO-OVA-mAb) to block this inhibitory molecule and to enhance the specificity of the exosomes toward T cells. Our study provides a unique strategy for functionalizing exosome membrane with anti-CTLA-4 antibody via lipid-anchoring method to synergize efficacy of cancer vaccination and immune checkpoint blockade against the tumor. STATEMENT OF SIGNIFICANCE: We designed T-cell-targeting exosomes (EXO-OVA-mAb) decorated with costimulatory molecules, MHCs, antigenic OVA peptide, and anti-CTLA-4 antibody, combining the strategies of vaccines and checkpoint blockade. The exosomes showed enhanced binding to T cells in tumor-draining lymph nodes, effectively induced T-cell activation, and improved the tumor homing of effector T cells, ultimately significantly restraining tumor growth. Thus, EXO-OVA-mAb greatly facilitates T-cell targeting, induces a strong tumor-specific T-cell response, and increased the ratio of effector T cells/regulatory T cells within tumors, resulting in appreciable tumor growth inhibition.


Assuntos
Vacinas Anticâncer , Exossomos , Animais , Linhagem Celular Tumoral , Células Dendríticas , Linfonodos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL
18.
Carbohydr Polym ; 249: 116815, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32933663

RESUMO

Hyaluronic acid (HA) assisted effective internalization into CD44 receptor-overexpressing cancer cells, which could offer an excellent cytotoxic profile and tumor alterations. In this study, duo-photothermal agents (copper sulfide (CuS) and graphene oxide (GO)), chemotherapeutic drug (doxorubicin (DOX)), and targeting moiety (HA) were incorporated into a complexed nanoconstruct for trio-responsive chemo-phototherapy. The nanosystem (CuS(DOX)-GO-HA) was demonstrating its responsive drug release and escalated photothermal behavior. The hyperthermia and photodynamic effect were observed along with efficient ROS generation in the presence of dual photosensitizers. The in vivo biodistribution and photothermal profile reflected a high accumulation and retention of the nanoconstruct in the tumor. Importantly, nanoconstructs effectively inhibit tumor growth based on tumor volume analysis and the altered expression of apoptosis, cell proliferation, and angiogenesis markers. Collectively, these findings suggest that this nanoconstruct has excellent antitumor effects in CD44 overexpressed cells showing the potential for clinical translation in the future.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/terapia , Carcinoma de Células Escamosas/terapia , Doxorrubicina/farmacologia , Ácido Hialurônico/administração & dosagem , Nanopartículas/administração & dosagem , Fotoquimioterapia , Animais , Antibióticos Antineoplásicos/química , Apoptose , Neoplasias da Mama/patologia , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Terapia Combinada , Cobre/química , Doxorrubicina/química , Feminino , Grafite/química , Humanos , Ácido Hialurônico/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Pharmaceutics ; 11(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717256

RESUMO

In this study, a transferrin (Tf)-conjugated polymeric nanoparticle was developed for the targeted delivery of the chemotherapeutic agent doxorubicin (Dox) in order to overcome multi-drug resistance in cancer treatment. Our objective was to improve Dox delivery for producing significant antitumor efficacy in Dox-resistant (R) breast cancer cell lines with minimum toxicity to healthy cells. The results of our experiments revealed that Dox was successfully loaded inside a transferrin (Tf)-conjugated polymeric nanoparticle composed of poloxamer 407 (F127) and 123 (P123) (Dox/F127&P123-Tf), which produced nanosized particles (~90 nm) with a low polydispersity index (~0.23). The accelerated and controlled release profiles of Dox from the nanoparticles were characterized in acidic and physiological pH and Dox/F127&P123-Tf enhanced Dox cytotoxicity in OVCAR-3, MDA-MB-231, and MDA-MB-231(R) cell lines through induction of cellular apoptosis. Moreover, Dox/F127&P123-Tf inhibited cell migration and altered the cell cycle patterns of different cancer cells. In vivo study in MDA-MB-231(R) tumor-bearing mice demonstrated enhanced delivery of nanoparticles to the tumor site when coated in a targeting moiety. Therefore, Dox/F127&P123-Tf has been tailored, using the principles of nanotherapeutics, to overcome drug-resistant chemotherapy.

20.
Theranostics ; 9(23): 6780-6796, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660068

RESUMO

Several therapeutic nanosystems have been engineered to remedy the shortcomings of cancer monotherapies, including immunotherapy (stimulating the host immune system to eradicate cancer), to improve therapeutic efficacy with minimizing off-target effects and tumor-induced immunosuppression. Light-activated components in nanosystems confer additional phototherapeutic effects as combinatorial modalities; however, systemic and thermal toxicities with unfavorable accumulation and excretion of nanoystem components now hamper their practical applications. Thus, there remains a need for optimal multifunctional nanosystems to enhance targeted, durable, and mild combination therapies for efficient cancer treatment without notable side effects. Methods: A nanosystem constructed with a base core (poly-L-histidine [H]-grafted black phosphorus [BP]) and a shell (erythrocyte membrane [EM]) is developed to offer a mild photoresponsive (near-infrared) activity with erythrocyte mimicry. In-flight electrostatic tailoring to extract uniform BP nanoparticles maintains a hydrodynamic size of <200 nm (enabling enhanced permeability and retention) after EM cloaking and enhances their biocompatibility. Results: Ephrin-A2 receptor-specific peptide (YSA, targeting cancer cells), interleukin-1α silencing small interfering RNA (ILsi, restricting regulatory T cell trafficking), and paclitaxel (X, inducing durable chemotherapeutics) are incorporated within the base core@shell constructs to create BP-H-ILsi-X@EM-YSA architectures, which provide a more intelligent nanosystem for combination cancer therapies. Conclusion: The in-flight tailoring of BP particles provides a promising base core for fabricating <200 nm EM-mimicking multifunctional nanosystems, which could be beneficial for constructing smarter nanoarchitectures to use in combination cancer therapies.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Nanopartículas/química , Neoplasias Experimentais/terapia , Paclitaxel/administração & dosagem , Fósforo/química , Terapêutica com RNAi/métodos , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular Tumoral , Membrana Celular/química , Terapia Combinada/métodos , Eritrócitos/química , Histidina/química , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/efeitos adversos , Neoplasias Experimentais/tratamento farmacológico , Paclitaxel/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA