Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO Rep ; 22(5): e50767, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33934497

RESUMO

Changes in composition of the intestinal microbiota are linked to the development of obesity and can lead to endothelial cell (EC) dysfunction. It is unknown whether EC can directly influence the microbiota. Insulin-like growth factor-1 (IGF-1) and its receptor (IGF-1R) are critical for coupling nutritional status and cellular growth; IGF-1R is expressed in multiple cell types including EC. The role of ECIGF-1R in the response to nutritional obesity is unexplored. To examine this, we use gene-modified mice with EC-specific overexpression of human IGF-1R (hIGFREO) and their wild-type littermates. After high-fat feeding, hIGFREO weigh less, have reduced adiposity and have improved glucose tolerance. hIGFREO show an altered gene expression and altered microbial diversity in the gut, including a relative increase in the beneficial genus Akkermansia. The depletion of gut microbiota with broad-spectrum antibiotics induces a loss of the favourable metabolic differences seen in hIGFREO mice. We show that IGF-1R facilitates crosstalk between the EC and the gut wall; this crosstalk protects against diet-induced obesity, as a result of an altered gut microbiota.


Assuntos
Resistência à Insulina , Microbiota , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Receptor IGF Tipo 1/genética
2.
Endocrinology ; 162(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34460911

RESUMO

Pericytes regulate vascular development, stability, and quiescence; their dysfunction contributes to diabetic retinopathy. To explore the role of insulin receptors in pericyte biology, we created pericyte insulin receptor knockout mice (PIRKO) by crossing PDGFRß-Cre mice with insulin receptor (Insr) floxed mice. Their neonatal retinal vasculature exhibited perivenous hypervascularity with venular dilatation, plus increased angiogenic sprouting in superficial and deep layers. Pericyte coverage of capillaries was unaltered in perivenous and periarterial plexi, and no differences in vascular regression or endothelial proliferation were apparent. Isolated brain pericytes from PIRKO had decreased angiopoietin-1 mRNA, whereas retinal and lung angiopoietin-2 mRNA was increased. Endothelial phospho-Tie2 staining was diminished and FoxO1 was more frequently nuclear localized in the perivenous plexus of PIRKO, in keeping with reduced angiopoietin-Tie2 signaling. Silencing of Insr in human brain pericytes led to reduced insulin-stimulated angiopoietin-1 secretion, and conditioned media from these cells was less able to induce Tie2 phosphorylation in human endothelial cells. Hence, insulin signaling in pericytes promotes angiopoietin-1 secretion and endothelial Tie2 signaling and perturbation of this leads to excessive vascular sprouting and venous plexus abnormalities. This phenotype mimics elements of diabetic retinopathy, and future work should evaluate pericyte insulin signaling in this disease.


Assuntos
Angiopoietina-2/genética , Células Endoteliais/metabolismo , Pericitos/metabolismo , Receptor de Insulina/fisiologia , Remodelação Vascular/genética , Angiopoietina-2/metabolismo , Angiopoietinas/genética , Angiopoietinas/metabolismo , Animais , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Insulina/metabolismo , Insulina/farmacologia , Camundongos , Camundongos Knockout , Pericitos/efeitos dos fármacos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Remodelação Vascular/efeitos dos fármacos
3.
J Clin Invest ; 130(8): 4104-4117, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32407295

RESUMO

Diabetes, obesity, and Alzheimer's disease (AD) are associated with vascular complications and impaired nitric oxide (NO) production. Furthermore, increased ß-site amyloid precursor protein-cleaving (APP-cleaving) enzyme 1 (BACE1), APP, and ß-amyloid (Aß) are linked with vascular disease development and increased BACE1 and Aß accompany hyperglycemia and hyperlipidemia. However, the causal relationship between obesity and diabetes, increased Aß, and vascular dysfunction is unclear. We report that diet-induced obesity (DIO) in mice increased plasma and vascular Aß42 that correlated with decreased NO bioavailability, endothelial dysfunction, and increased blood pressure. Genetic or pharmacological reduction of BACE1 activity and Aß42 prevented and reversed, respectively, these outcomes. In contrast, expression of human mutant APP in mice or Aß42 infusion into control diet-fed mice to mimic obese levels impaired NO production, vascular relaxation, and raised blood pressure. In humans, increased plasma Aß42 correlated with diabetes and endothelial dysfunction. Mechanistically, higher Aß42 reduced endothelial NO synthase (eNOS), cyclic GMP (cGMP), and protein kinase G (PKG) activity independently of diet, whereas endothelin-1 was increased by diet and Aß42. Lowering Aß42 reversed the DIO deficit in the eNOS/cGMP/PKG pathway and decreased endothelin-1. Our findings suggest that BACE1 inhibitors may have therapeutic value in the treatment of vascular disease associated with diabetes.


Assuntos
Peptídeos beta-Amiloides/sangue , Diabetes Mellitus/sangue , Angiopatias Diabéticas/sangue , Obesidade/sangue , Fragmentos de Peptídeos/sangue , Transdução de Sinais , Peptídeos beta-Amiloides/genética , Animais , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Óxido Nítrico/sangue , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/genética , Obesidade/patologia , Fragmentos de Peptídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA