Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 22(6): 2230-2242, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202357

RESUMO

The two As resistance arsRBC operons of Pseudomonas putida KT2440 are followed by a downstream gene called arsH that encodes an NADPH-dependent flavin mononucleotide reductase. In this work, we show that the arsH1 and (to a lesser extent) arsH2 genes of P. putida KT2440 strengthened its tolerance to both inorganic As(V) and As(III) and relieved the oxidative stress undergone by cells exposed to either oxyanion. Furthermore, overexpression of arsH1 and arsH2 endowed P. putida with a high tolerance to the oxidative stress caused by diamide (a drainer of metabolic NADPH) in the absence of any arsenic. To examine whether the activity of ArsH was linked to a direct action on the arsenic compounds tested, arsH1 and arsH2 genes were expressed in Escherichia coli, which has an endogenous arsRBC operon but lacks an arsH ortholog. The resulting clones both deployed a lower production of reactive oxygen species (ROS) when exposed to As salts and had a superior endurance to physiological redox insults. These results suggest that besides the claimed direct action on organoarsenicals, ArsH contributes to relieve toxicity of As species by mediating reduction of ROS produced in vivo upon exposure to the oxyanion, e.g. by generating FMNH2 to fuel ROS-quenching activities.


Assuntos
Arsênio/toxicidade , Proteínas de Bactérias/genética , Tolerância a Medicamentos/genética , FMN Redutase/genética , Pseudomonas putida/genética , Escherichia coli/genética , Óperon , Estresse Oxidativo , Pseudomonas putida/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Environ Microbiol ; 18(4): 1122-36, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26487573

RESUMO

Hydrothermal vents represent a deep, hot, aphotic biosphere where chemosynthetic primary producers, fuelled by chemicals from Earth's subsurface, form the basis of life. In this study, we examined microbial mats from two distinct volcanic sites within the Hellenic Volcanic Arc (HVA). The HVA is geologically and ecologically unique, with reported emissions of CO2 -saturated fluids at temperatures up to 220°C and a notable absence of macrofauna. Metagenomic data reveals highly complex prokaryotic communities composed of chemolithoautotrophs, some methanotrophs, and to our surprise, heterotrophs capable of anaerobic degradation of aromatic hydrocarbons. Our data suggest that aromatic hydrocarbons may indeed be a significant source of carbon in these sites, and instigate additional research into the nature and origin of these compounds in the HVA. Novel physiology was assigned to several uncultured prokaryotic lineages; most notably, a SAR406 representative is attributed with a role in anaerobic hydrocarbon degradation. This dataset, the largest to date from submarine volcanic ecosystems, constitutes a significant resource of novel genes and pathways with potential biotechnological applications.


Assuntos
Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Ecossistema , Fontes Hidrotermais/microbiologia , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Sequência de Bases , Geologia , Metagenômica , RNA Ribossômico 16S/genética , Temperatura
3.
Environ Microbiol ; 17(9): 3330-40, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25684119

RESUMO

Phosphinothricin (PPT) is a non-specific inhibitor of glutamine synthetase that has been employed as herbicide for selection of transgenic plants expressing cognate resistance genes. While the soil bacterium Pseudomonas putida KT2440 has been generally considered PPT-sensitive, inspection of its genome sequence reveals the presence of two highly similar open reading frames (PP_1924 and PP_4846) encoding acetylases with a potential to cause tolerance to the herbicide. To explore this possibility, each of these genes (named phoN1 and phoN2) was separately cloned and their activities examined in vivo and in vitro. Genetic and biochemical evidence indicated that phoN1 encodes a bona fide PPT-acetyl transferase, the expression of which suffices to make P. putida tolerant to high concentrations of the herbicide. In contrast, PhoN2 does not act on PPT but displays instead activity against methionine sulfoximine (MetSox), another glutamine synthetase inhibitor. When the geometry of the substrate-binding site of PhoN1 was grafted with the equivalent residues of the predicted PhoN2 structure, the resulting protein increased significantly MetSox resistance of the expression host concomitantly with the loss of activity on PPT. These observations uncover intricate biochemical and genetic interactions among soil microorganisms and how they can be perturbed by exposure to generic herbicides in soil.


Assuntos
Acetiltransferases/metabolismo , Aminobutiratos/farmacologia , Farmacorresistência Bacteriana , Herbicidas/farmacologia , Metionina Sulfoximina/metabolismo , Pseudomonas putida/enzimologia , Acetiltransferases/genética , Sequência de Aminoácidos , Aminobutiratos/metabolismo , Sequência de Bases , Clonagem Molecular , Glutamato-Amônia Ligase/antagonistas & inibidores , Herbicidas/metabolismo , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/genética
4.
Environ Microbiol ; 17(1): 229-38, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24673935

RESUMO

The genome of the soil bacterium Pseudomonas putida KT2440 bears two virtually identical arsRBCH operons putatively encoding resistance to inorganic arsenic species. Single and double chromosomal deletions in each of these ars clusters of this bacterium were tested for arsenic sensitivity and found that the contribution of each operon to the resistance to the metalloid was not additive, as either cluster sufficed to endow cells with high-level resistance. However, otherwise identical traits linked to each of the ars sites diverged when temperature was decreased. Growth of the various mutants at 15°C (instead of the standard 30°C for P. putida) uncovered that ars2 affords a much higher resistance to As (III) than the ars1 counterpart. Reverse transcription polymerase chain reaction of arsB1 and arsB2 genes as well as lacZ fusions to the Pars1 and Pars2 promoters traced the difference to variations in transcription of the corresponding gene sets at each temperature. Functional redundancy may thus be selected as a stable condition - rather than just as transient state - if it affords one key activity to be expressed under a wider range of physicochemical settings. This seems to provide a straightforward solution to regulatory problems in environmental bacteria that thrive under changing scenarios.


Assuntos
Arsênio/toxicidade , Óperon , Pseudomonas putida/genética , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Pseudomonas putida/efeitos dos fármacos , Temperatura
5.
Nucleic Acids Res ; 41(Database issue): D666-75, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23180763

RESUMO

The 'Standard European Vector Architecture' database (SEVA-DB, http://seva.cnb.csic.es) was conceived as a user-friendly, web-based resource and a material clone repository to assist in the choice of optimal plasmid vectors for de-constructing and re-constructing complex prokaryotic phenotypes. The SEVA-DB adopts simple design concepts that facilitate the swapping of functional modules and the extension of genome engineering options to microorganisms beyond typical laboratory strains. Under the SEVA standard, every DNA portion of the plasmid vectors is minimized, edited for flaws in their sequence and/or functionality, and endowed with physical connectivity through three inter-segment insulators that are flanked by fixed, rare restriction sites. Such a scaffold enables the exchangeability of multiple origins of replication and diverse antibiotic selection markers to shape a frame for their further combination with a large variety of cargo modules that can be used for varied end-applications. The core collection of constructs that are available at the SEVA-DB has been produced as a starting point for the further expansion of the formatted vector platform. We argue that adoption of the SEVA format can become a shortcut to fill the phenomenal gap between the existing power of DNA synthesis and the actual engineering of predictable and efficacious bacteria.


Assuntos
Bases de Dados Genéticas , Vetores Genéticos , Plasmídeos/genética , Bactérias/genética , Clonagem Molecular , Resistência Microbiana a Medicamentos/genética , Vetores Genéticos/normas , Internet , Fenótipo , Regiões Promotoras Genéticas , Origem de Replicação , Terminologia como Assunto
6.
Environ Microbiol ; 13(4): 960-74, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21219561

RESUMO

Functional studies of biodegradative activities in environmental microorganisms require molecular tools for monitoring catabolic enzymes in the members of the native microbiota. To this end, we have generated repertories of single-domain V(HH) fragments of camel immunoglobulins (nanobodies) able to interact with multiple proteins that are descriptors of environmentally relevant processes. For this, we immunized Camelus dromedarius with a cocktail of up to 12 purified enzymes that are representative of major types of detoxifying activities found in aerobic and anaerobic microorganisms. Following the capture of the antigen-binding modules from the mRNA of the camel lymphocytes and the selection of sub-libraries for each of the enzymes in a phage display system we found a large number of V(HH) modules that interacted with each of the antigens. Those associated to the enzyme 2,3 dihydroxybiphenyl dioxygenase of Burkholderia xenovorans LB400 (BphC) and the arsenate reductase of Staphylococcus aureus (ArsC) were examined in detail and found to hold different qualities that were optimal for distinct protein recognition procedures. The repertory of anti-BphC V(HH) s included variants with a strong affinity and specificity for linear epitopes of the enzyme. When the anti-BphC V(HH) library was recloned in a prokaryotic intracellular expression system, some nanobodies were found to inhibit the dioxygenase activity in vivo. Furthermore, anti-ArsC V(HH) s were able to discriminate between proteins stemming from different enzyme families. The easiness of generating large collections of binders with different properties widens considerably the molecular toolbox for analysis of biodegradative bacteria and opens fresh possibilities of monitoring protein markers and activities in the environment.


Assuntos
Arseniato Redutases/metabolismo , Burkholderia/enzimologia , Dioxigenases/metabolismo , Cadeias Pesadas de Imunoglobulinas/biossíntese , Staphylococcus aureus/enzimologia , Animais , Arseniato Redutases/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Camelus/imunologia , Dioxigenases/imunologia , Biblioteca Gênica , Masculino , Modelos Moleculares , Biblioteca de Peptídeos , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA