Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 12(12): 2055-2067, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28188486

RESUMO

PURPOSE: In 2005, an application for surgical planning called AYRA[Formula: see text] was designed and validated by different surgeons and engineers at the Virgen del Rocío University Hospital, Seville (Spain). However, the segmentation methods included in AYRA and in other surgical planning applications are not able to segment accurately tumors that appear in soft tissue. The aims of this paper are to offer an exhaustive validation of an accurate semiautomatic segmentation tool to delimitate retroperitoneal tumors from CT images and to aid physicians in planning both radiotherapy doses and surgery. METHODS: A panel of 6 experts manually segmented 11 cases of tumors, and the segmentation results were compared exhaustively with: the results provided by a surgical planning tool (AYRA), the segmentations obtained using a radiotherapy treatment planning system (Pinnacle[Formula: see text]), the segmentation results obtained by a group of experts in the delimitation of retroperitoneal tumors and the segmentation results using the algorithm under validation. RESULTS: 11 cases of retroperitoneal tumors were tested. The proposed algorithm provided accurate results regarding the segmentation of the tumor. Moreover, the algorithm requires minimal computational time-an average of 90.5% less than that required when manually contouring the same tumor. CONCLUSION: A method developed for the semiautomatic selection of retroperitoneal tumor has been validated in depth. AYRA, as well as other surgical and radiotherapy planning tools, could be greatly improved by including this algorithm.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Retroperitoneais/diagnóstico , Adolescente , Adulto , Humanos , Masculino , Neoplasias Retroperitoneais/terapia , Tomografia Computadorizada por Raios X , Adulto Jovem
2.
Front Neurosci ; 5: 26, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21442012

RESUMO

In this paper we present a very exciting overlap between emergent nanotechnology and neuroscience, which has been discovered by neuromorphic engineers. Specifically, we are linking one type of memristor nanotechnology devices to the biological synaptic update rule known as spike-time-dependent-plasticity (STDP) found in real biological synapses. Understanding this link allows neuromorphic engineers to develop circuit architectures that use this type of memristors to artificially emulate parts of the visual cortex. We focus on the type of memristors referred to as voltage or flux driven memristors and focus our discussions on a behavioral macro-model for such devices. The implementations result in fully asynchronous architectures with neurons sending their action potentials not only forward but also backward. One critical aspect is to use neurons that generate spikes of specific shapes. We will see how by changing the shapes of the neuron action potential spikes we can tune and manipulate the STDP learning rules for both excitatory and inhibitory synapses. We will see how neurons and memristors can be interconnected to achieve large scale spiking learning systems, that follow a type of multiplicative STDP learning rule. We will briefly extend the architectures to use three-terminal transistors with similar memristive behavior. We will illustrate how a V1 visual cortex layer can assembled and how it is capable of learning to extract orientations from visual data coming from a real artificial CMOS spiking retina observing real life scenes. Finally, we will discuss limitations of currently available memristors. The results presented are based on behavioral simulations and do not take into account non-idealities of devices and interconnects. The aim of this paper is to present, in a tutorial manner, an initial framework for the possible development of fully asynchronous STDP learning neuromorphic architectures exploiting two or three-terminal memristive type devices. All files used for the simulations are made available through the journal web site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA