Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
PLoS Genet ; 18(11): e1010483, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36374919

RESUMO

The target of the rapamycin (TOR) signaling pathway plays a negative role in controlling virulence in phytopathogenic fungi. However, the actual targets involved in virulence are currently unknown. Using the corn smut fungus Ustilago maydis, we tried to address the effects of the ectopic activation of TOR on virulence. We obtained gain-of-function mutations in the Rheb GTPase, one of the conserved TOR kinase regulators. We have found that unscheduled activation of Rheb resulted in the alteration of the proper localization of the pheromone receptor, Pra1, and thereby pheromone insensitivity. Since pheromone signaling triggers virulence in Ustilaginales, we believe that the Rheb-induced pheromone blindness was responsible for the associated lack of virulence. Strikingly, although these effects required the concourse of the Rsp5 ubiquitin ligase and the Art3 α-arrestin, the TOR kinase was not involved. Several eukaryotic organisms have shown that Rheb transmits environmental information through TOR-dependent and -independent pathways. Therefore, our results expand the range of signaling manners at which environmental conditions could impinge on the virulence of phytopathogenic fungi.


Assuntos
Ustilago , Ustilago/genética , Feromônios/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Zea mays/metabolismo , Fungos/metabolismo , Cegueira , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(48): 30599-30609, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199618

RESUMO

Plant pathogenic fungi often developed specialized infection structures to breach the outer surface of a host plant. These structures, called appressoria, lead the invasion of the plant by the fungal hyphae. Studies in different phytopathogenic fungi showed that appressorium formation seems to be subordinated to the cell cycle. This subordination ensures the loading in the invading hypha of the correct genetic information to proceed with plant infection. However, how the cell cycle transmits its condition to the genetic program controlling appressorium formation and promoting the plant's invasion is unknown. Our results have uncovered how this process occurs for the appressorium of Ustilago maydis, the agent responsible for corn smut disease. Here, we described that the complex Clb2-cyclin-dependent kinase (Cdk)1, one of the master regulators of G2/M cell cycle progression in U. maydis, interacts and controls the subcellular localization of Biz1, a transcriptional factor required for the activation of the appressorium formation. Besides, Biz1 can arrest the cell cycle by down-regulation of the gene encoding a second b-cyclin Clb1 also required for the G2/M transition. These results revealed a negative feedback loop between appressorium formation and cell cycle progression in U. maydis, which serves as a "toggle switch" to control the fungal decision between infecting the plant or proliferating out of the plant.


Assuntos
Basidiomycota/fisiologia , Interações Hospedeiro-Patógeno , Zea mays/microbiologia , Proteínas 14-3-3/metabolismo , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Fosforilação , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Int J Mol Sci ; 20(15)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387236

RESUMO

Ppz enzymes are type-1 related Ser/Thr protein phosphatases that are restricted to fungi. In S. cerevisiae and other fungi, Ppz1 is involved in cation homeostasis and is regulated by two structurally-related inhibitory subunits, Hal3 and Vhs3, with Hal3 being the most physiologically relevant. Remarkably, Hal3 and Vhs3 have moonlighting properties, as they participate in an atypical heterotrimeric phosphopantothenoyl cysteine decarboxylase (PPCDC), a key enzyme for Coenzyme A biosynthesis. Here we identify and functionally characterize Ppz1 phosphatase (UmPpz1) and its presumed regulatory subunit (UmHal3) in the plant pathogen fungus Ustilago maydis. UmPpz1 is not an essential protein in U. maydis and, although possibly related to the cell wall integrity pathway, is not involved in monovalent cation homeostasis. The expression of UmPpz1 in S. cerevisiae Ppz1-deficient cells partially mimics the functions of the endogenous enzyme. In contrast to what was found in C. albicans and A. fumigatus, UmPpz1 is not a virulence determinant. UmHal3, an unusually large protein, is the only functional PPCDC in U. maydis and, therefore, an essential protein. However, when overexpressed in U. maydis or S. cerevisiae, UmHal3 does not reproduce Ppz1-inhibitory phenotypes. Indeed, UmHal3 does not inhibit UmPpz1 in vitro (although ScHal3 does). Therefore, UmHal3 might not be a moonlighting protein.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Fosfoproteínas Fosfatases/genética , Ustilago/fisiologia , Fenótipo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Doenças das Plantas/microbiologia , Proteínas Recombinantes , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
4.
Semin Cell Dev Biol ; 57: 93-99, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27032479

RESUMO

To initiate pathogenic development, pathogenic fungi respond to a set of inductive cues. Some of them are of an extracellular nature (environmental signals), while others are intracellular (developmental signals). These signals must be integrated into a single response whose major outcome is changes in the morphogenesis of the fungus. The regulation of the cell cycle is pivotal during these cellular differentiation steps; therefore, cell cycle regulation would likely provide control points for infectious development by fungal pathogens. Here, we provide clues to understanding how the control of the cell cycle is integrated with the morphogenesis program in pathogenic fungi, and we review current examples that support these connections.


Assuntos
Ciclo Celular , Fungos/citologia , Fungos/patogenicidade , Morfogênese , Fungos/crescimento & desenvolvimento , Modelos Biológicos , Virulência
5.
PLoS Genet ; 11(10): e1005570, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26492073

RESUMO

A subset of human cancer cells uses a specialized, aberrant recombination pathway known as ALT to maintain telomeres, which in these cells are characterized by complex aberrations including length heterogeneity, high levels of unpaired C-strand, and accumulation of extra-chromosomal telomere repeats (ECTR). These phenotypes have not been recapitulated in any standard budding or fission yeast mutant. We found that eliminating Ku70 or Ku80 in the yeast-like fungus Ustilago maydis results initially in all the characteristic telomere aberrations of ALT cancer cells, including C-circles, a highly specific marker of ALT. Subsequently the ku mutants experience permanent G2 cell cycle arrest, accompanied by loss of telomere repeats from chromosome ends and even more drastic accumulation of very short ECTRs (vsECTRs). The deletion of atr1 or chk1 rescued the lethality of the ku mutant, and "trapped" the telomere aberrations in the early ALT-like stage. Telomere abnormalities are telomerase-independent, but dramatically suppressed by deletion of mre11 or blm, suggesting major roles for these factors in the induction of the ALT pathway. In contrast, removal of other DNA damage response and repair factors such as Rad51 has disparate effects on the ALT phenotypes, suggesting that these factors process ALT intermediates or products. Notably, the antagonism of Ku and Mre11 in the induction of ALT is reminiscent of their roles in DSB resection, in which Blm is also known to play a key role. We suggest that an aberrant resection reaction may constitute an early trigger for ALT telomeres, and that the outcomes of ALT are distinct from DSB because of the unique telomere nucleoprotein structure.


Assuntos
Antígenos Nucleares/genética , Proteínas de Ligação a DNA/genética , Recombinação Genética , Telômero/genética , Ustilago/genética , Proliferação de Células/genética , Cromossomos/genética , Dano ao DNA/genética , Reparo do DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Autoantígeno Ku , Rad51 Recombinase/genética , RecQ Helicases/genética , Telomerase/genética
6.
Development ; 141(24): 4817-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25411209

RESUMO

Ustilago maydis is a plant pathogen that requires a specific structure called infective filament to penetrate the plant tissue. Although able to grow, this filament is cell cycle arrested on the plant surface. This cell cycle arrest is released once the filament penetrates the plant tissue. The reasons and mechanisms for this cell cycle arrest are unknown. Here, we have tried to address these questions. We reached three conclusions from our studies. First, the observed cell cycle arrest is the result of the cooperation of at least two distinct mechanisms: one involving the activation of the DNA damage response (DDR) cascade; and the other relying on the transcriptional downregulation of Hsl1, a kinase that modulates the G2/M transition. Second, a sustained cell cycle arrest during the infective filament step is necessary for the virulence in U. maydis, as a strain unable to arrest the cell cycle was severely impaired in its ability to infect corn plants. Third, production of the appressorium, a structure required for plant penetration, is incompatible with an active cell cycle. The inability to infect plants by strains defective in cell cycle arrest seems to be caused by their failure to induce the appressorium formation process. In summary, our findings uncover genetic circuits to arrest the cell cycle during the growth of this fungus on the plant surface, thus allowing the penetration into plant tissue.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Citoesqueleto/fisiologia , Redes Reguladoras de Genes/genética , Doenças das Plantas/microbiologia , Ustilago/fisiologia , Ustilago/patogenicidade , Zea mays/microbiologia , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Virulência
7.
Nucleic Acids Res ; 43(4): 2138-51, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25653166

RESUMO

The Ku heterodimer serves in the initial step in repairing DNA double-strand breaks by the non-homologous end-joining pathway. Besides this key function, Ku also plays a role in other cellular processes including telomere maintenance. Inactivation of Ku can lead to DNA repair defects and telomere aberrations. In model organisms where Ku has been studied, inactivation can lead to DNA repair defects and telomere aberrations. In general Ku deficient mutants are viable, but a notable exception to this is human where Ku has been found to be essential. Here we report that similar to the situation in human Ku is required for cell proliferation in the fungus Ustilago maydis. Using conditional strains for Ku expression, we found that cells arrest permanently in G2 phase when Ku expression is turned off. Arrest results from cell cycle checkpoint activation due to persistent signaling via the DNA damage response (DDR). Our results point to the telomeres as the most likely source of the DNA damage signal. Inactivation of the DDR makes the Ku complex dispensable for proliferation in this organism. Our findings suggest that in U. maydis, unprotected telomeres arising from Ku depletion are the source of the signal that activates the DDR leading to cell cycle arrest.


Assuntos
Antígenos Nucleares/fisiologia , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Fúngicas/fisiologia , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Telômero/metabolismo , Antígenos Nucleares/genética , Dano ao DNA , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Autoantígeno Ku , Transdução de Sinais , Telômero/química , Homeostase do Telômero , Ustilago/genética
8.
Biochim Biophys Acta ; 1851(9): 1240-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26055626

RESUMO

The mevalonate pathway is tightly linked to cell division. Mevalonate derived non-sterol isoprenoids and cholesterol are essential for cell cycle progression and mitosis completion respectively. In the present work, we studied the effects of fluoromevalonate, a competitive inhibitor of mevalonate diphosphate decarboxylase, on cell proliferation and cell cycle progression in both HL-60 and MOLT-4 cells. This enzyme catalyzes the synthesis of isopentenyl diphosphate, the first isoprenoid in the cholesterol biosynthesis pathway, consuming ATP at the same time. Inhibition of mevalonate diphosphate decarboxylase was followed by a rapid accumulation of mevalonate diphosphate and the reduction of ATP concentrations, while the cell content of cholesterol was barely affected. Strikingly, mevalonate diphosphate decarboxylase inhibition also resulted in the depletion of dNTP pools, which has never been reported before. These effects were accompanied by inhibition of cell proliferation and cell cycle arrest at S phase, together with the appearance of γ-H2AX foci and Chk1 activation. Inhibition of Chk1 in cells treated with fluoromevalonate resulted in premature entry into mitosis and massive cell death, indicating that the inhibition of mevalonate diphosphate decarboxylase triggered a DNA damage response. Notably, the supply of exogenously deoxyribonucleosides abolished γ-H2AX formation and prevented the effects of mevalonate diphosphate decarboxylase inhibition on DNA replication and cell growth. The results indicate that dNTP pool depletion caused by mevalonate diphosphate decarboxylase inhibition hampered DNA replication with subsequent DNA damage, which may have important consequences for replication stress and genomic instability.


Assuntos
Carboxiliases/metabolismo , Desoxirribonucleosídeos/metabolismo , Linfócitos/efeitos dos fármacos , Ácido Mevalônico/farmacologia , Trifosfato de Adenosina/metabolismo , Carboxiliases/antagonistas & inibidores , Carboxiliases/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Desoxirribonucleosídeos/farmacologia , Regulação da Expressão Gênica , Células HL-60 , Halogenação , Hemiterpenos/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Ácido Mevalônico/análogos & derivados , Ácido Mevalônico/metabolismo , Compostos Organofosforados/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
9.
J Cell Sci ; 125(Pt 19): 4597-608, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22767510

RESUMO

The morphogenesis-related NDR kinase (MOR) pathway regulates morphogenesis in fungi. In spite of the high conservation of its components, impairing their functions results in highly divergent cellular responses depending on the fungal species. The reasons for such differences are unclear. Here we propose that the species-specific connections between cell cycle regulation and the MOR pathway could be partly responsible for these divergences. We based our conclusion on the characterization of the MOR pathway in the fungus Ustilago maydis. Each gene that encodes proteins of this pathway in U. maydis was deleted. All mutants exhibited a constitutive hyperpolarized growth, contrasting with the loss of polarity observed in other fungi. Using a conditional allele of the central NDR kinase Ukc1, we found that impairing MOR function resulted in a prolonged G2 phase. This cell cycle delay appears to be the consequence of an increase in Cdk1 inhibitory phosphorylation. Strikingly, prevention of the inhibitory Cdk1 phosphorylation abolished the hyperpolarized growth associated with MOR pathway depletion. We found that the prolonged G2 phase resulted in higher levels of expression of crk1, a conserved kinase that promotes polar growth in U. maydis. Deletion of crk1 also abolished the dramatic activation of polar growth in cells lacking the MOR pathway. Taken together, our results suggest that Cdk1 inhibitory phosphorylation may act as an integrator of signaling cascades regulating fungal morphogenesis and that the distinct morphological response observed in U. maydis upon impairment of the MOR pathway could be due to a cell cycle deregulation.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas Fúngicas/metabolismo , Morfogênese , Transdução de Sinais , Ustilago/citologia , Ustilago/metabolismo , Actinas/metabolismo , Polaridade Celular , Regulação para Baixo , Fase G2 , Redes Reguladoras de Genes , Mutação/genética , Fosforilação , Ligação Proteica , Ustilago/enzimologia , Ustilago/crescimento & desenvolvimento
10.
Fungal Genet Biol ; 70: 42-67, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25011008

RESUMO

Fungi have the capacity to cause devastating diseases of both plants and animals, causing significant harvest losses that threaten food security and human mycoses with high mortality rates. As a consequence, there is a critical need to promote development of new antifungal drugs, which requires a comprehensive molecular knowledge of fungal pathogenesis. In this review, we critically evaluate current knowledge of seven fungal organisms used as major research models for fungal pathogenesis. These include pathogens of both animals and plants; Ashbya gossypii, Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, Magnaporthe oryzae, Ustilago maydis and Zymoseptoria tritici. We present key insights into the virulence mechanisms deployed by each species and a comparative overview of key insights obtained from genomic analysis. We then consider current trends and future challenges associated with the study of fungal pathogenicity.


Assuntos
Cromossomos Fúngicos , Fungos/genética , Fungos/patogenicidade , Genoma Fúngico , Fungos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Metabolismo Secundário , Virulência
11.
Plant Cell ; 23(4): 1654-65, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21478441

RESUMO

In the phytopathogenic fungus Ustilago maydis, the dikaryotic state dominates the period of growth occurring during the infectious phase. Dikaryons are cells in which two nuclei, one from each parent cell, share a single cytoplasm for a period of time without undergoing nuclear fusion. In fungal cells, maintenance of the dikaryotic state requires an intricate cell division process that often involves the formation of a structure known as the clamp connection as well as the sorting of one of the nuclei to this structure to ensure that each daughter dikaryon inherits a balance of each parental genome. Here, we describe an atypical role of the DNA damage checkpoint kinases Chk1 and Atr1 during pathogenic growth of U. maydis. We found that Chk1 and Atr1 collaborate to control cell cycle arrest during the induction of the virulence program in U. maydis and that Chk1 and Atr1 work together to control the dikaryon formation. These findings uncover a link between a widely conserved signaling cascade and the virulence program in a phytopathogen. We propose a model in which adjustment of the cell cycle by the Atr1-Chk1 axis controls fidelity in dikaryon formation. Therefore, Chk1 and Atr1 emerge as critical cell type regulators in addition to their roles in the DNA damage response.


Assuntos
Dano ao DNA , Transdução de Sinais , Ustilago/crescimento & desenvolvimento , Zea mays/microbiologia , Ciclo Celular , Núcleo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Ativação Enzimática , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Fosforilação , Proteínas Quinases/metabolismo , Ustilago/citologia , Ustilago/enzimologia , Ustilago/patogenicidade , Virulência
13.
PLoS Genet ; 6(7): e1001009, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20617206

RESUMO

It is widely accepted that MAPK activation in budding and fission yeasts is often associated with negative effects on cell cycle progression, resulting in delay or arrest at a specific stage in the cell cycle, thereby enabling cells to adapt to changing environmental conditions. For instance, activation of the Cell Wall Integrity (CWI) pathway in the budding yeast Saccharomyces cerevisiae signals an increase in CDK inhibitory phosphorylation, which leads cells to remain in the G2 phase. Here we characterized the CWI pathway of Ustilago maydis, a fungus evolutionarily distant from budding and fission yeasts, and show that activation of the CWI pathway forces cells to escape from G2 phase. In spite of these disparate cell cycle responses in S. cerevisiae and U. maydis, the CWI pathway in both organisms appears to respond to the same class cell wall stressors. To understand the basis of such a difference, we studied the mechanism behind the U. maydis response. We found that activation of CWI pathway in U. maydis results in a decrease in CDK inhibitory phosphorylation, which depends on the mitotic phosphatase Cdc25. Moreover, in response to activation of the CWI pathway, Cdc25 accumulates in the nucleus, providing a likely explanation for the increase in the unphosphorylated form of CDK. We also found that the extended N-terminal domain of Cdc25, which is dispensable under normal growth conditions, is required for this G2 escape as well as for resistance to cell wall stressors. We propose that the process of cell cycle adaptation to cell stress evolved differently in these two divergent organisms so that each can move towards a cell cycle phase most appropriate for responding to the environmental signals encountered.


Assuntos
Parede Celular/enzimologia , Proteínas Fúngicas/metabolismo , Fase G2 , Sistema de Sinalização das MAP Quinases , Ustilago/citologia , Ustilago/enzimologia , Parede Celular/genética , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Ustilago/genética , Ustilago/metabolismo , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
14.
Nature ; 444(7115): 97-101, 2006 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17080091

RESUMO

Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.


Assuntos
Genoma Fúngico/genética , Ustilago/genética , Ustilago/patogenicidade , Zea mays/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Genômica , Família Multigênica/genética , Ustilago/crescimento & desenvolvimento , Virulência/genética
15.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34849846

RESUMO

Site-specific recombinases have been used in higher eukaryotes, especially in animals, for a broad range of applications, including chromosomal translocations, large deletions, site-specific integration, and tissue-specific as well as conditional knock-outs. The application of site-specific recombination has also been demonstrated in simple eukaryotes like fungi and protozoa. However, its use in fungal research, especially in phytopathogenic fungi, has often been limited to "recycle" the marker genes used in transformation experiments. We show that Cre recombinase can be used for conditional gene deletions in the phytopathogenic fungus Ustilago maydis. Conditional gene knock-outs can be generated via the transcriptional control of the recombinase by U. maydis promoters specifically activated during the biotrophic phase of fungal growth, enabling gene deletions at defined developmental stages inside the plant tissue. Also, we show that a tamoxifen-activated Cre-recombinase allows the tight control necessary for the induced deletion of essential genes by the addition of tamoxifen. These tools will be helpful to address the function of genes under both axenic and in planta conditions for the U. maydis-maize pathosystem and should pave the way for similar approaches in other plant pathosystems.


Assuntos
Basidiomycota
16.
J Cell Sci ; 122(Pt 22): 4130-40, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19861497

RESUMO

During induction of the virulence program in the phytopathogenic fungus Ustilago maydis, the cell cycle is arrested on the plant surface and it is not resumed until the fungus enters the plant. The mechanism of this cell cycle arrest is unknown, but it is thought that it is necessary for the correct implementation of the virulence program. Here, we show that this arrest takes place in the G2 phase, as a result of an increase in the inhibitory phosphorylation of the catalytic subunit of the mitotic cyclin-dependent kinase Cdk1. Sequestration in the cytoplasm of the Cdc25 phosphatase seems to be one of the reasons for the increase in inhibitory phosphorylation. Strikingly, we also report the DNA-damage checkpoint kinase Chk1 appears to be involved in this process. Our results support the emerging idea that checkpoint kinases have roles other than in the DNA-damage response, by virtue of their ability to interact with the cell cycle machinery.


Assuntos
Proteína Quinase CDC2/metabolismo , Fase G2/fisiologia , Proteínas Quinases/metabolismo , Ustilago/metabolismo , Fosfatases cdc25/metabolismo , Proteína Quinase CDC2/genética , Domínio Catalítico/fisiologia , Quinase 1 do Ponto de Checagem , Ciclinas/metabolismo , Citoplasma/metabolismo , Regulação para Baixo/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Engenharia Genética , Fosforilação/fisiologia , Proteínas Quinases/genética , Transdução de Sinais/fisiologia , Ustilago/citologia , Ustilago/patogenicidade , Fosfatases cdc25/genética
17.
Chem Res Toxicol ; 24(2): 185-92, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21261262

RESUMO

A wide range of cationic amphiphilic drugs (CADs) from different therapeutic areas are known to cause phospholipidosis both in vivo and in vitro. Although the relevance of this storage disorder for human health remains uncertain, CADs have been repeatedly associated with clinical side effects, and as a result, phospholipidosis is of major concern for drug development in the pharmaceutical industry. An important unresolved question in this field is whether phospholipidosis is really linked to cellular toxicity. This work was focused on studying cellular responses associated with CAD-induced phospholipidosis in cultured mammalian kidney cells. Dibucaine (2-butoxy-N-[2-diethylaminoethyl]quinoline-4-carboxamide), an amide-type anesthetic with poorly defined cytotoxic effects, was used to induce phospholipidosis in Vero cells. The results from several assays that measure cell viability, proliferation, and morphological changes indicated that dibucaine-induced lysosomal phospholipidosis was accompanied by cellular defense responses such as transient growth arrest and autophagy, under mild stress conditions. Conversely, when tolerance limits were exceeded treated Vero cells underwent extensive and irreparable injury, leading ultimately to cell death. Our data provide additional information that may be of considerable interest for drug safety assessment.


Assuntos
Anestésicos Locais/efeitos adversos , Dibucaína/efeitos adversos , Lipidoses/induzido quimicamente , Fosfolipídeos/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Lisossomos/efeitos dos fármacos , Células Vero
18.
DNA Repair (Amst) ; 8(6): 720-31, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19269260

RESUMO

Chk1 is a protein kinase that acts as a key signal transducer within the complex network responsible of the cellular response to different DNA damages. It is a conserved element along the eukaryotic kingdom, together with a second checkpoint kinase, called Chk2/Rad53. In fact, all organisms studied so far carried at least one copy of each kind of checkpoint kinase. Since the relative contribution to the DNA-damage response of each type of kinase varies from one organism to other, the current view about the roles of Chk1 and Chk2/Rad53 during DNA-damage response is one of mutual complementation and intimate cooperation. However, in this work it is reported that Ustilago maydis - a phytopathogenic fungus exhibiting extreme resistance to UV and ionizing radiation - have a single kinase belonging to the Chk1 family but strikingly no kinases related to Chk2/Rad53 family are apparent. The U. maydis Chk1 kinase is able to respond to different classes of DNA damages and its activity is required for the cellular adaptation to such damages. As other described components of the Chk1 family of kinases, U. maydis Chk1 is phosphorylated and translocated to nucleus in response to DNA-damage signals. Interestingly subtle differences in this response depending on the kind of DNA damage are apparent, suggesting that in U. maydis the sole Chk1 kinase recapitulates the roles that in other organisms are shared by Chk1 and the Chk2/Rad53 family of protein kinases.


Assuntos
Núcleo Celular/genética , Dano ao DNA , DNA Fúngico/fisiologia , Proteínas Quinases/fisiologia , Ustilago/enzimologia , Ustilago/genética , Antibióticos Antineoplásicos/farmacologia , Núcleo Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Ensaio de Desvio de Mobilidade Eletroforética , Inibidores Enzimáticos/farmacologia , Fase G2/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Hidroxiureia/farmacologia , Fleomicinas/farmacologia , Fosforilação/efeitos dos fármacos , Filogenia , Proteínas Serina-Treonina Quinases/fisiologia , Transporte Proteico , Ustilago/crescimento & desenvolvimento
19.
Mutat Res ; 702(1): 86-91, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20682357

RESUMO

Propyl p-hydroxybenzoate, commonly referred to as propylparaben, is the most frequently used preservative to inhibit microbial growth and extend shelf life of a range of consumer products. The objective of this study was to provide further insight into the toxicological profile of this compound, because of the current discrepancy in the literature with regard to the safety of parabens. The Vero cell line, derived from the kidney of the green monkey, was selected to evaluate the adverse effects of propylparaben by use of a set of mechanistically relevant endpoints for detecting cytotoxicity and genotoxic activities. Our results demonstrate that exposure to the compound for 24h causes changes in cell-proliferation rates rather than in cell viability. A significant and dose-dependent decline in the percentage of mitotic cells was observed at the lowest concentration tested, mainly due to cell-cycle arrest at the G0/G1 phase. Immunodetection techniques revealed that induction of DNA double-strand breaks and oxidative damage underlies the cytostatic effect observed in treated Vero cells. Additional studies are in progress to extend these findings, which define a novel mode of action of propylparaben in cultured mammalian cells.


Assuntos
Dano ao DNA , Estresse Oxidativo/genética , Parabenos/toxicidade , Animais , Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Conservantes de Alimentos/toxicidade , Índice Mitótico , Conservantes Farmacêuticos/toxicidade , Células Vero
20.
Eukaryot Cell ; 8(6): 821-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19363061

RESUMO

Potassium and Na(+) effluxes across the plasma membrane are crucial processes for the ionic homeostasis of cells. In fungal cells, these effluxes are mediated by cation/H(+) antiporters and ENA ATPases. We have cloned and studied the functions of the two ENA ATPases of Ustilago maydis, U. maydis Ena1 (UmEna1) and UmEna2. UmEna1 is a typical K(+) or Na(+) efflux ATPase whose function is indispensable for growth at pH 9.0 and for even modest Na(+) or K(+) tolerances above pH 8.0. UmEna1 locates to the plasma membrane and has the characteristics of the low-Na(+)/K(+)-discrimination ENA ATPases. However, it still protects U. maydis cells in high-Na(+) media because Na(+) showed a low cytoplasmic toxicity. The UmEna2 ATPase is phylogenetically distant from UmEna1 and is located mainly at the endoplasmic reticulum. The function of UmEna2 is not clear, but we found that it shares several similarities with Neurospora crassa ENA2, which suggests that endomembrane ENA ATPases may exist in many fungi. The expression of ena1 and ena2 transcripts in U. maydis was enhanced at high pH and at high K(+) and Na(+) concentrations. We discuss that there are two modes of Na(+) tolerance in fungi: the high-Na(+)-content mode, involving ENA ATPases with low Na(+)/K(+) discrimination, as described here for U. maydis, and the low-Na(+)-content mode, involving Na(+)-specific ENA ATPases, as in Neurospora crassa.


Assuntos
Adenosina Trifosfatases/metabolismo , Citoplasma/química , Proteínas Fúngicas/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Ustilago/enzimologia , Ustilago/crescimento & desenvolvimento , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Citoplasma/enzimologia , Citoplasma/genética , Citoplasma/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fungos/química , Fungos/classificação , Fungos/enzimologia , Fungos/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , Ustilago/química , Ustilago/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA