Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 65(7): e0256620, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33875421

RESUMO

Chikungunya virus (CHIKV) nonstructural protein 1 (nsP1) harbors the methyltransferase (MTase) and guanylyltransferase (GTase) activities needed for viral RNA capping and represents a promising antiviral drug target. We compared the antiviral efficacies of nsP1 inhibitors belonging to the MADTP, CHVB, and FHNA series (6'-fluoro-homoneplanocin A [FHNA], its 3'-keto form, and 6'-ß-fluoro-homoaristeromycin). Cell-based phenotypic cross-resistance assays revealed that the CHVB and MADTP series had similar modes of action that differed from that of the FHNA series. In biochemical assays with purified Semliki Forest virus and CHIKV nsP1, CHVB compounds strongly inhibited MTase and GTase activities, while MADTP-372 had a moderate inhibitory effect. FHNA did not directly inhibit the enzymatic activity of CHIKV nsP1. The first-of-their-kind molecular-docking studies with the cryo-electron microscopy (cryo-EM) structure of CHIKV nsP1, which is assembled into a dodecameric ring, revealed that the MADTP and CHVB series bind at the S-adenosylmethionine (SAM)-binding site in the capping domain, where they would function as competitive or noncompetitive inhibitors. The FHNA series was predicted to bind at the secondary binding pocket in the ring-aperture membrane-binding and oligomerization (RAMBO) domain, potentially interfering with the membrane binding and oligomerization of nsP1. Our cell-based and enzymatic assays, in combination with molecular docking and mapping of compound resistance mutations to the nsP1 structure, allowed us to group nsP1 inhibitors into functionally distinct classes. This study identified druggable pockets in the nsP1 dodecameric structure and provides a basis for the rational design, optimization, and combination of inhibitors of this unique and promising antiviral drug target.


Assuntos
Vírus Chikungunya , Proteínas não Estruturais Virais , Adenosina/análogos & derivados , Microscopia Crioeletrônica , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais/genética , Replicação Viral
2.
Molecules ; 25(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178258

RESUMO

The bovine viral diarrhea virus (BVDV), a pestivirus from the family of Flaviviridae is ubiquitous and causes a range of clinical manifestations in livestock, mainly cattle. Two quinolinecarboxamide analogues were identified in a CPE-based screening effort, as selective inhibitors of the in vitro bovine viral diarrhea virus (BVDV) replication, i.e., TO505-6180/CSFCI (average EC50 = 0.07 µM, SD = 0.02 µM, CC50 > 100 µM) and TO502-2403/CSFCII (average EC50 = 0.2 µM, SD = 0.06 µM, CC50 > 100 µM). The initial antiviral activity observed for both hits against BVDV was corroborated by measuring the inhibitory effect on viral RNA synthesis and the production of infectious virus. Modification of the substituents on the quinolinecarboxamide scaffold resulted in analogues that proved about 7-fold more potent (average EC50 = 0.03 with a SD = 0.01 µM) and that were devoid of cellular toxicity, for the concentration range tested (SI = 3333). CSFCII resistant BVDV variants were selected and were found to carry the F224P mutation in the viral RNA-dependent RNA polymerase (RdRp), whereas CSFCI resistant BVDV carried two mutations in the same region of the RdRp, i.e., N264D and F224Y. Likewise, molecular modeling revealed that F224P/Y and N264D are located in a small cavity near the fingertip domain of the pestivirus polymerase. CSFC-resistant BVDV proved to be cross-resistant to earlier reported pestivirus inhibitors (BPIP, AG110, LZ37, and BBP) that are known to target the same region of the RdRp. CSFC analogues did not inhibit the in vitro activity of recombinant BVDV RdRp but inhibited the activity of BVDV replication complexes (RCs). CSFC analogues likely interact with the fingertip of the pestivirus RdRp at the same position as BPIP, AG110, LZ37, and BBP. This indicates that this region is a "hot spot" for the inhibition of pestivirus replication.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/tratamento farmacológico , Vírus da Diarreia Viral Bovina/efeitos dos fármacos , Pestivirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/patogenicidade , Farmacorresistência Viral/genética , Mutação/efeitos dos fármacos , Pestivirus/patogenicidade , Quinolinas/farmacologia
3.
PLoS Pathog ; 11(3): e1004733, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25799064

RESUMO

The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-based inhibitors have broad-spectrum activity but often exhibit off-target effects. Most non-nucleoside inhibitors (NNIs) target surface cavities, which are structurally more flexible than the nucleotide-binding pocket, and hence have a more narrow spectrum of activity and are more prone to resistance development. Here, we report a novel NNI, GPC-N114 (2,2'-[(4-chloro-1,2-phenylene)bis(oxy)]bis(5-nitro-benzonitrile)) with broad-spectrum activity against enteroviruses and cardioviruses (another genus in the picornavirus family). Surprisingly, coxsackievirus B3 (CVB3) and poliovirus displayed a high genetic barrier to resistance against GPC-N114. By contrast, EMCV, a cardiovirus, rapidly acquired resistance due to mutations in 3Dpol. In vitro polymerase activity assays showed that GPC-N114 i) inhibited the elongation activity of recombinant CVB3 and EMCV 3Dpol, (ii) had reduced activity against EMCV 3Dpol with the resistance mutations, and (iii) was most efficient in inhibiting 3Dpol when added before the RNA template-primer duplex. Elucidation of a crystal structure of the inhibitor bound to CVB3 3Dpol confirmed the RNA-binding channel as the target for GPC-N114. Docking studies of the compound into the crystal structures of the compound-resistant EMCV 3Dpol mutants suggested that the resistant phenotype is due to subtle changes that interfere with the binding of GPC-N114 but not of the RNA template-primer. In conclusion, this study presents the first NNI that targets the RNA template channel of the picornavirus polymerase and identifies a new pocket that can be used for the design of broad-spectrum inhibitors. Moreover, this study provides important new insight into the plasticity of picornavirus polymerases at the template binding site.


Assuntos
Antivirais/química , Cardiovirus/enzimologia , Enterovirus Humano B/enzimologia , Poliovirus/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Animais , Sítios de Ligação , Chlorocebus aethiops , Células HeLa , Humanos , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
4.
Arch Pharm (Weinheim) ; 347(8): 599-608, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24917378

RESUMO

A series of 2-pyridylhydrazones derived from phenyl-pyridazin-3-yl-methanones were prepared in search for potential novel antitumor agents. The stereochemistry of these compounds was established by means of NMR spectroscopy. Whereas hydrazones derived from 3-benzoylpyridazines (IC50 = 0.99-8.74 µM) inhibited the proliferation of the tumor cell lines tested, the non-fully aromatic 3-benzoylpyridazinone hydrazones (IC50 >10 µM) turned out to be inactive. Compounds E-1b (IC50 = 0.12 µM) and E-1d (IC50 = 0.18 µM) exert high cytotoxic activities in clonogenic assays involving human tumor cells of different tissue origins. In vivo application of compound E-1b (300 mg/kg/day) resulted in a 66% reduction in tumor burden.


Assuntos
Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Hidrazonas/síntese química , Piridazinas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/uso terapêutico , Concentração Inibidora 50 , Camundongos Nus , Estrutura Molecular , Especificidade de Órgãos , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Antimicrob Agents Chemother ; 55(9): 4196-203, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21746939

RESUMO

GS-9190 (Tegobuvir) is a novel imidazopyridine inhibitor of hepatitis C virus (HCV) RNA replication in vitro and has demonstrated potent antiviral activity in patients chronically infected with genotype 1 (GT1) HCV. GS-9190 exhibits reduced activity against GT2a (JFH1) subgenomic replicons and GT2a (J6/JFH1) infectious virus, suggesting that the compound's mechanism of action involves a genotype-specific viral component. To further investigate the GS-9190 mechanism of action, we utilized the susceptibility differences between GT1b and GT2a by constructing a series of replicon chimeras where combinations of 1b and 2a nonstructural proteins were encoded within the same replicon. The antiviral activities of GS-9190 against the chimeric replicons were reduced to levels comparable to that of the wild-type GT2a replicon in chimeras expressing GT2a NS5B. GT1b replicons in which the ß-hairpin region (amino acids 435 to 455) was replaced by the corresponding sequence of GT2a were markedly less susceptible to GS-9190, indicating the importance of the thumb subdomain of the polymerase in this effect. Resistance selection in GT1b replicon cells identified several mutations in NS5B (C316Y, Y448H, Y452H, and C445F) that contributed to the drug resistance phenotype. Reintroduction of these mutations into wild-type replicons conferred resistance to GS-9190, with the number of NS5B mutations correlating with the degree of resistance. Analysis of GS-9190 cross-resistance against previously reported NS5B drug-selected mutations showed that the resistance pattern of GS-9190 is different from other nonnucleoside inhibitors. Collectively, these data demonstrate that GS-9190 represents a novel class of nonnucleoside polymerase inhibitors that interact with NS5B likely through involvement of the ß-hairpin in the thumb subdomain.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Purinas/farmacologia , Piridazinas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Antivirais/química , Linhagem Celular , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Mutação , Plasmídeos/genética , Purinas/química , Piridazinas/química
6.
ACS Med Chem Lett ; 11(5): 906-912, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435404

RESUMO

The chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus, and it is the causative agent of chikungunya fever (CHIKF). Although it has re-emerged as an epidemic threat, so far there are neither vaccines nor pharmacotherapy available to prevent or treat an infection. Herein, we describe the synthesis and structure-activity relationship studies of a class of novel small molecule inhibitors against CHIKV and the discovery of a new potent inhibitor (compound 6a). The starting point of the optimization process was N-ethyl-6-methyl-2-(4-(4-fluorophenylsulfonyl)piperazine-1-yl)pyrimidine-4-amine (1) with an EC50 of 8.68 µM, a CC50 of 122 µM, and therefore a resulting selectivity index (SI) of 14.2. The optimized compound 6a, however, displays a much lower micromolar antiviral activity (EC50 value of 3.95 µM), considerably better cytotoxic liability (CC50 value of 260 µM) and consequently an improved SI of greater than 61. Therefore, we report the identification of a promising novel compound class that has the potential for further development of antiviral drugs against the CHIKV.

7.
J Hepatol ; 50(5): 999-1009, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19303654

RESUMO

BACKGROUND/AIMS: Following lead optimization, a set of substituted imidazopyridines was identified as potent and selective inhibitors of in vitro HCV replication. The particular characteristics of one of the most potent compounds in this series (5-[[3-(4-chlorophenyl)-5-isoxazolyl]methyl]-2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridine or GS-327073), were studied. METHODS: Antiviral activity of GS-327073 was evaluated in HCV subgenomic replicons (genotypes 1b, 1a and 2a), in the JFH1 (genotype 2a) infectious system and against replicons resistant to various selective HCV inhibitors. Combination studies of GS-327073 with other selective HCV inhibitors were performed. RESULTS: Fifty percent effective concentrations for inhibition of HCV subgenomic 1b replicon replication ranged between 2 and 50 nM and were 100-fold higher for HCV genotype 2a virus. The 50% cytostatic concentrations were > or = 17 microM, thus resulting in selectivity indices of > or = 340. GS-327073 retained wild-type activity against HCV replicons that were resistant to either HCV protease inhibitors or several polymerase inhibitors. GS-327073, when combined with either interferon alpha, ribavirin, a nucleoside polymerase or a protease inhibitor resulted in overall additive antiviral activity. Combinations containing GS-327073 proved highly effective in clearing hepatoma cells from HCV. CONCLUSIONS: GS-327073 is a potent in vitro inhibitor of HCV replication either alone or in combination with other selective HCV inhibitors.


Assuntos
Antivirais/farmacologia , Hepacivirus/fisiologia , Piridinas/farmacologia , Replicação Viral/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Hepacivirus/genética , Humanos , Imidazóis/farmacologia , Interferons/farmacologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Inibidores de Proteases/farmacologia , RNA Viral/metabolismo , Ribavirina/farmacologia
8.
J Virol ; 82(10): 4720-30, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18337578

RESUMO

TBZE-029 {1-(2,6-difluorophenyl)-6-trifluoromethyl-1H,3H-thiazolo[3,4-a]benzimidazole} is a novel selective inhibitor of the replication of several enteroviruses. We show that TBZE-029 exerts its antiviral activity through inhibition of viral RNA replication, without affecting polyprotein processing. To identify the viral target of TBZE-029, drug-resistant coxsackievirus B3 (CVB3) was selected. Genotyping of resistant clones led to the identification of three amino acid mutations in nonstructural protein 2C, clustered at amino acid positions 224, 227, and 229, immediately downstream of NTPase/helicase motif C. The mutations were reintroduced, either alone or combined, into an infectious full-length CVB3 clone. In particular the mutations at positions 227 and 229 proved essential for the altered sensitivity of CVB3 to TBZE-029. Resistant virus exhibited cross-resistance to the earlier-reported antienterovirus agents targeting 2C, namely, guanidine hydrochloride, HBB [2-(alpha-hydroxybenzyl)-benzimidazole], and MRL-1237 {1-(4-fluorophenyl)-2-[(4-imino-1,4-dihydropyridin-1-yl)methyl]benzimidazole hydrochloride}. The ATPase activity of 2C, however, remained unaltered in the presence of TBZE-029.


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Enterovirus Humano B/efeitos dos fármacos , Tiazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Chlorocebus aethiops , Farmacorresistência Viral/genética , Enterovirus Humano B/genética , Guanidina/farmacologia , Estrutura Molecular , Mutação de Sentido Incorreto , Piridinas/farmacologia , RNA Viral/biossíntese , Células Vero , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
9.
Emerg Infect Dis ; 14(4): 545-51, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18394270

RESUMO

In 1988, the World Health Assembly launched the Global Polio Eradication Initiative, which aimed to use large-scale vaccination with the oral vaccine to eradicate polio worldwide by the year 2000. Although important progress has been made, polio remains endemic in several countries. Also, the current control measures will likely be inadequate to deal with problems that may arise in the postpolio era. A panel convoked by the National Research Council concluded that the use of antiviral drugs may be essential in the polio eradication strategy. We here report on a comparative study of the antipoliovirus activity of a selection of molecules that have previously been reported to be inhibitors of picornavirus replication and discuss their potential use, alone or in combination, for the treatment or prophylaxis of poliovirus infection.


Assuntos
Antivirais/farmacologia , Poliomielite/prevenção & controle , Poliovirus/efeitos dos fármacos , Células HeLa , Humanos , Poliomielite/tratamento farmacológico , Poliovirus/fisiologia , Ligação Proteica , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
10.
Bioorg Med Chem Lett ; 18(18): 5123-5, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18710805

RESUMO

The synthesis and SAR of a series of 60 substituted 2-phenoxy-5-nitrobenzonitriles (analogues of MDL-860) as inhibitors of enterovirus replication (in particular of coxsackievirus B3 (CVB 3)) are reported. Several of the analogues inhibited CVB 3 and other enteroviruses at low-micromolar concentrations.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Enterovirus Humano B/efeitos dos fármacos , Nitrilas/síntese química , Nitrilas/farmacologia , Antivirais/química , Técnicas de Química Combinatória , Humanos , Estrutura Molecular , Nitrilas/química , Relação Estrutura-Atividade
11.
ACS Infect Dis ; 3(8): 585-594, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28605587

RESUMO

MDL-860 is a broad-spectrum antipicornavirus compound discovered in 1982 and one of the few promising candidates effective in in vivo virus infection. Despite the effectiveness, the target and the mechanism of action of MDL-860 remain unknown. Here, we have characterized antipoliovirus activity of MDL-860 and identified host phosphatidylinositol-4 kinase III beta (PI4KB) as the target. MDL-860 treatment caused covalent modification and irreversible inactivation of PI4KB. A cysteine residue at amino acid 646 of PI4KB, which locates at the bottom of a surface pocket apart from the active site, was identified as the target site of MDL-860. This work reveals the mechanism of action of this class of PI4KB inhibitors and offers insights into novel allosteric regulation of PI4KB activity.


Assuntos
Antivirais/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Células Musculares/efeitos dos fármacos , Nitrilas/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Regulação Alostérica , Sítio Alostérico , Antivirais/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Expressão Gênica , Células HEK293 , Humanos , Cinética , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Modelos Moleculares , Células Musculares/enzimologia , Células Musculares/virologia , Nitrilas/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Picornaviridae/efeitos dos fármacos , Picornaviridae/fisiologia , Ligação Proteica , Replicação Viral/efeitos dos fármacos
12.
J Med Chem ; 49(21): 6343-50, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17034140

RESUMO

Recently we have described the antitumor activities of 2-benzoxazolylhydrazones derived from 2-formyl and 2-acetylpyridines. In search of a more efficacious analogue, compounds in which the 2-acetylpyridine moiety has been replaced by 2-acylpyridine and alpha-(N)-acetyldiazine/quinoline groups have been synthesized. The 2-acylpyridyl hydrazones inhibited in vitro cell proliferation in the nM range, whereas the hydrazones derived from the alpha-(N)-acetyldiazines/quinolines inhibited cell growth in the muM range. Compounds tested in the NCI-60 cell assay were effective inhibitors of leukemia, colon, and ovarian cancer cells. E-13k [N-benzoxazol-2-yl-N'-(1-isoquinolin-3-yl-ethylidene)-hydrazine] inhibited the proliferation of MCF-7 breast carcinoma cells more efficiently than nontransformed MCF-10A cells. It is not transported by P-glycoprotein and a weak MRP substrate. Increased concentrations of serum or alpha(1)-acid glycoprotein did not reduce the antiproliferative activity of the compound. In the in vivo hollow fiber assay, E-13k achieved a score of 24, with a net cell kill of OVCAR-3 (ovarian) and SF2-95 (CNS) tumor cells.


Assuntos
Antineoplásicos/síntese química , Benzoxazóis/síntese química , Hidrazonas/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzoxazóis/química , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrazonas/química , Hidrazonas/farmacologia , Especificidade de Órgãos , Estereoisomerismo , Relação Estrutura-Atividade
13.
Antivir Chem Chemother ; 24(5-6): 136-147, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27815331

RESUMO

BACKGROUND: Chemotherapy is an important tool for controlling enterovirus infections, but clinically effective anti-enterovirus drugs do not currently exist, mainly due to the development of drug resistance. We investigated the combination effects of enterovirus replication inhibitors in order to limit this process. In previous studies, we showed the efficacy of consecutive alternating administration of the triple combinations disoxaril/guanidine/oxoglaucine and pleconaril/guanidine/oxoglaucine against coxsackievirus B1 infection in newborn mice. Drug sensitivity tests of the viral brain isolates showed that these drug combinations prevented the development of drug resistance. METHODS: In the current study, we replaced guanidine-HCl with enteroviral RNA synthesis inhibitor MDL-860 to test the effect of a new triple combination-pleconaril/MDL-860/oxoglaucine-applied via consecutive alternating administration in newborn mice infected subcutaneously with 20 MLD50 of coxsackievirus B1. RESULTS: The pleconaril/MDL-860/oxoglaucine combination via consecutive alternating administration showed high activity at the 75 mg/kg MDL-860 dose: a protective effect of 50% and a pronounced suppression of brain virus titers. Moreover, along with prevention of drug resistance, a phenomenon of increased drug sensitivity was established. MDL-860 sensitivity in pleconaril/MDL-860/oxoglaucine increased 8.2 times vs. placebo (29 times vs. monotherapy) on day 7 and oxoglaucine sensitivity-4.9 times vs. placebo (by 6.8 times vs. monotherapy) on day 13. As concerns pleconaril, a demonstrable prevention of drug resistance was registered without increase of drug sensitivity. Daily, simultaneous administration of pleconaril/MDL-860/oxoglaucine showed no protective effects and led to a rapid development of drug resistance. CONCLUSIONS: These results add new support for using consecutive alternating administration treatment courses to achieve clinically effective chemotherapy of enterovirus infections.


Assuntos
Antivirais/farmacologia , Apomorfina/análogos & derivados , Infecções por Coxsackievirus/tratamento farmacológico , Enterovirus Humano B/efeitos dos fármacos , Enterovirus Humano B/crescimento & desenvolvimento , Nitrilas/farmacologia , Oxidiazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/administração & dosagem , Antivirais/química , Apomorfina/administração & dosagem , Apomorfina/química , Apomorfina/farmacologia , Células Cultivadas , Farmacorresistência Viral/efeitos dos fármacos , Quimioterapia Combinada , Humanos , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Nitrilas/administração & dosagem , Nitrilas/química , Oxidiazóis/administração & dosagem , Oxidiazóis/química , Oxazóis
14.
Antiviral Res ; 106: 71-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24680957

RESUMO

2,6-Bis(benzimidazol-2-yl)pyridine (BBP/CSFA-0) was identified in a CPE-based screening as a selective inhibitor of the in vitro bovine viral diarrhea virus (BVDV) replication. The EC50-values for the inhibition of BVDV-induced cytopathic (CPE) effect, viral RNA synthesis and the production of infectious virus were 0.3±0.1µM, 0.05±0.01µM and 0.3±0.04µM, respectively. Furthermore, BBP/CSFA-0 inhibits the in vitro replication of the classical swine fever virus (CSFV) with an EC50 of 0.33±0.25µM. BBP/CSFA-0 proved in vitro inactive against the hepatitis C virus, that belongs like BVDV and CSFV to the family of Flaviviridae. Modification of the substituents on the two 1H-benzimidazole groups of BBP resulted in analogues equipotent in anti-BVDV activity (EC50=0.7±0.1µM), devoid of cytotoxicity (S.I.=142). BBP resistant BVDV was selected for and was found to carry the I261M mutation in the viral RNA-dependent RNA polymerase (RdRp). Likewise, BBP-resistant CSFV was selected for; this variant carries either an I261N or a P262A mutation in NS5B. Molecular modeling revealed that I261 and P262 are located in a small cavity near the fingertip domain of the pestivirus polymerase. BBP-resistant BVDV and CSFV proved to be cross-resistant to earlier reported pestivirus inhibitors (BPIP, AG110 and LZ37) that are known to target the same region of the RdRp. BBP did not inhibit the in vitro activity of recombinant BVDV RdRp but inhibited the activity of BVDV replication complexes (RCs). BBP interacts likely with the fingertip of the pestivirus RdRp at the same position as BPIP, AG110 and LZ37. This indicates that this region is a "hot spot" for inhibition of pestivirus replication.


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Vírus da Febre Suína Clássica/efeitos dos fármacos , Vírus da Diarreia Viral Bovina Tipo 1/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Piridinas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/toxicidade , Benzimidazóis/química , Benzimidazóis/isolamento & purificação , Benzimidazóis/toxicidade , Bovinos , Linhagem Celular , Vírus da Febre Suína Clássica/enzimologia , Vírus da Diarreia Viral Bovina Tipo 1/enzimologia , Farmacorresistência Viral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/toxicidade , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Modelos Moleculares , Mutação , Conformação Proteica , Piridinas/química , Piridinas/isolamento & purificação , Piridinas/toxicidade
15.
Antiviral Res ; 110: 1-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043639

RESUMO

A novel small molecule, H1PVAT, was identified as a potent and selective inhibitor of the in vitro replication of all three poliovirus serotypes, whereas no activity was observed against other enteroviruses. Time-of-drug-addition studies revealed that the compound interfered with an early stage of virus replication. Four independently-selected H1PVAT-resistant virus variants uniformly carried the single amino acid substitution I194F in the VP1 capsid protein. Poliovirus type 1 strain Sabin, reverse-engineered to contain this substitution, proved to be completely insensitive to the antiviral effect of H1PVAT and was cross-resistant to the capsid-binding inhibitors V-073 and pirodavir. The VP1 I194F mutant had a smaller plaque phenotype than wild-type virus, and the amino acid substitution rendered the virus more susceptible to heat inactivation. Both for the wild-type and VP1 I194F mutant virus, the presence of H1PVAT increased the temperature at which the virus was inactivated, providing evidence that the compound interacts with the viral capsid, and that capsid stabilization and antiviral activity are not necessarily correlated. Molecular modeling suggested that H1PVAT binds with high affinity in the pocket underneath the floor of the canyon that is involved in receptor binding. Introduction of the I194F substitution in the model of VP1 induced a slight concerted rearrangement of the core ß-barrel in this pocket, which disfavors binding of the compound. Taken together, the compound scaffold, to which H1PVAT belongs, may represent another promising class of poliovirus capsid-binding inhibitors next to V-073 and pirodavir. Potent antivirals against poliovirus will be essential in the poliovirus eradication end-game.


Assuntos
Antivirais/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , Poliomielite/tratamento farmacológico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Replicação Viral/efeitos dos fármacos , Substituição de Aminoácidos/genética , Animais , Sequência de Bases , Sítios de Ligação , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Farmacorresistência Viral , Células HeLa , Humanos , Modelos Moleculares , Piperidinas/farmacologia , Poliovirus/efeitos dos fármacos , Poliovirus/genética , Piridazinas/farmacologia , RNA Viral/genética , Análise de Sequência de RNA
16.
Cell Res ; 22(11): 1576-92, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22945356

RESUMO

RNA viruses can rapidly mutate and acquire resistance to drugs that directly target viral enzymes, which poses serious problems in a clinical context. Therefore, there is a growing interest in the development of antiviral drugs that target host factors critical for viral replication, since they are unlikely to mutate in response to therapy. We recently demonstrated that phosphatidylinositol-4-kinase IIIß (PI4KIIIß) and its product phosphatidylinositol-4-phosphate (PI4P) are essential for replication of enteroviruses, a group of medically important RNA viruses including poliovirus (PV), coxsackievirus, rhinovirus, and enterovirus 71. Here, we show that enviroxime and GW5074 decreased PI4P levels at the Golgi complex by directly inhibiting PI4KIIIß. Coxsackievirus mutants resistant to these inhibitors harbor single point mutations in the non-structural protein 3A. These 3A mutations did not confer compound-resistance by restoring the activity of PI4KIIIß in the presence of the compounds. Instead, replication of the mutant viruses no longer depended on PI4KIIIß, since their replication was insensitive to siRNA-mediated depletion of PI4KIIIß. The mutant viruses also did not rely on other isoforms of PI4K. Consistently, no high level of PI4P could be detected at the replication sites induced by the mutant viruses in the presence of the compounds. Collectively, these findings indicate that through specific single point mutations in 3A, CVB3 can bypass an essential host factor and lipid for its propagation, which is a new example of RNA viruses acquiring resistance against antiviral compounds, even when they directly target host factors.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Antivirais/farmacologia , Enterovirus Humano B/efeitos dos fármacos , Enterovirus Humano B/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Farmacorresistência Viral/genética , Enterovirus Humano B/genética , Células HeLa , Humanos , Indóis/farmacologia , Oximas , Fenóis/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Mutação Puntual , Interferência de RNA , RNA Interferente Pequeno , Sulfonamidas , Replicação Viral/efeitos dos fármacos
17.
Biochem Biophys Res Commun ; 353(3): 628-32, 2007 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-17194441

RESUMO

Despite the fact that enteroviruses are implicated in a variety of human diseases, there is no approved therapy for the treatment of enteroviral infections. Here, a series of 2,6-dihalophenyl-substituted 1H,3H-thiazolo[3,4-a]benzimidazoles with anti-enterovirus activity is reported. The compounds elicit potent activity against coxsackievirus A9, echovirus 9 and 11 and all six strains of coxsackievirus B. A structure-activity relationship analysis revealed that the presence of substituents at position 6 of the tricyclic system positively influences the antiviral activity, whereas substitutions at position 7 are less favorable. In particular a 6-trifluoromethyl substitution leads to a substantial improvement of the antiviral activity as compared to the unsubstituted structure. Furthermore, an additional introduction of a 2-Cl, 6-F substitution on the phenyl at C-1 results in a further increase of the antiviral activity. Hence, 1-(2-chloro-6-fluorophenyl)-6-trifluoromethyl-1H,3H-thiazolo[3,4-a]benzimidazole results in a dose-dependent inhibition of viral replication with a 50% effective concentration (EC50) of 0.41 microg/ml without any detectable cytotoxicity at the highest concentration (100 microg/ml) tested.


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Infecções por Enterovirus/tratamento farmacológico , Tiazóis/farmacologia , Animais , Antivirais/uso terapêutico , Benzimidazóis/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Células HeLa , Humanos , Picornaviridae/efeitos dos fármacos , Relação Estrutura-Atividade , Tiazóis/uso terapêutico , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA