Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(7): e1009335, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34324585

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that can cause serious opportunistic disease in the immunocompromised or through congenital infection. To progress through its life cycle, Toxoplasma relies on multiple layers of gene regulation that includes an array of transcription and epigenetic factors. Over the last decade, the modification of mRNA has emerged as another important layer of gene regulation called epitranscriptomics. Here, we report that epitranscriptomics machinery exists in Toxoplasma, namely the methylation of adenosines (m6A) in mRNA transcripts. We identified novel components of the m6A methyltransferase complex and determined the distribution of m6A marks within the parasite transcriptome. m6A mapping revealed the modification to be preferentially located near the 3'-boundary of mRNAs. Knockdown of the m6A writer components METTL3 and WTAP resulted in diminished m6A marks and a complete arrest of parasite replication. Furthermore, we examined the two proteins in Toxoplasma that possess YTH domains, which bind m6A marks, and showed them to be integral members of the cleavage and polyadenylation machinery that catalyzes the 3'-end processing of pre-mRNAs. Loss of METTL3, WTAP, or YTH1 led to a defect in transcript 3'-end formation. Together, these findings establish that the m6A epitranscriptome is essential for parasite viability by contributing to the processing of mRNA 3'-ends.


Assuntos
Sobrevivência Celular/fisiologia , Metiltransferases/metabolismo , Processamento de Terminações 3' de RNA/fisiologia , RNA Mensageiro/metabolismo , Toxoplasma/metabolismo , Células Cultivadas , Epigênese Genética/fisiologia , Humanos , Metilação
2.
Am J Hum Genet ; 104(2): 287-298, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661771

RESUMO

Hypusine is formed post-translationally from lysine and is found in a single cellular protein, eukaryotic translation initiation factor-5A (eIF5A), and its homolog eIF5A2. Biosynthesis of hypusine is a two-step reaction involving the enzymes deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). eIF5A is highly conserved throughout eukaryotic evolution and plays a role in mRNA translation, cellular proliferation, cellular differentiation, and inflammation. DHPS is also highly conserved and is essential for life, as Dhps-null mice are embryonic lethal. Using exome sequencing, we identified rare biallelic, recurrent, predicted likely pathogenic variants in DHPS segregating with disease in five affected individuals from four unrelated families. These individuals have similar neurodevelopmental features that include global developmental delay and seizures. Two of four affected females have short stature. All five affected individuals share a recurrent missense variant (c.518A>G [p.Asn173Ser]) in trans with a likely gene disrupting variant (c.1014+1G>A, c.912_917delTTACAT [p.Tyr305_Ile306del], or c.1A>G [p.Met1?]). cDNA studies demonstrated that the c.1014+1G>A variant causes aberrant splicing. Recombinant DHPS enzyme harboring either the p.Asn173Ser or p.Tyr305_Ile306del variant showed reduced (20%) or absent in vitro activity, respectively. We co-transfected constructs overexpressing HA-tagged DHPS (wild-type or mutant) and GFP-tagged eIF5A into HEK293T cells to determine the effect of these variants on hypusine biosynthesis and observed that the p.Tyr305_Ile306del and p.Asn173Ser variants resulted in reduced hypusination of eIF5A compared to wild-type DHPS enzyme. Our data suggest that rare biallelic variants in DHPS result in reduced enzyme activity that limits the hypusination of eIF5A and are associated with a neurodevelopmental disorder.


Assuntos
Genes Recessivos/genética , Lisina/análogos & derivados , Mutação , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Alelos , Sequência de Aminoácidos , Criança , Pré-Escolar , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Feminino , Haplótipos , Humanos , Lisina/biossíntese , Masculino , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Linhagem , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Convulsões/enzimologia , Convulsões/genética , Adulto Jovem , Fator de Iniciação de Tradução Eucariótico 5A
3.
FASEB J ; 35(5): e21473, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811703

RESUMO

Pancreatic diseases including diabetes and exocrine insufficiency would benefit from therapies that reverse cellular loss and/or restore cellular mass. The identification of molecular pathways that influence cellular growth is therefore critical for future therapeutic generation. Deoxyhypusine synthase (DHPS) is an enzyme that post-translationally modifies and activates the mRNA translation factor eukaryotic initiation factor 5A (eIF5A). Previous work demonstrated that the inhibition of DHPS impairs zebrafish exocrine pancreas development; however, the link between DHPS, eIF5A, and regulation of pancreatic organogenesis remains unknown. Herein we identified that the conditional deletion of either Dhps or Eif5a in the murine pancreas results in the absence of acinar cells. Because DHPS catalyzes the activation of eIF5A, we evaluated and uncovered a defect in mRNA translation concomitant with defective production of proteins that influence cellular development. Our studies reveal a heretofore unappreciated role for DHPS and eIF5A in the synthesis of proteins required for cellular development and function.


Assuntos
Lisina/análogos & derivados , Organogênese , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/fisiologia , Pâncreas Exócrino/citologia , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Animais , Proliferação de Células , Feminino , Lisina/biossíntese , Masculino , Camundongos , Camundongos Knockout , Pâncreas Exócrino/metabolismo , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Fator de Iniciação de Tradução Eucariótico 5A
4.
Traffic ; 18(3): 149-158, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27991712

RESUMO

Proper protein localization is essential for critical cellular processes, including vesicle-mediated transport and protein translocation. Tail-anchored (TA) proteins are integrated into organellar membranes via the C-terminus, orienting the N-terminus towards the cytosol. Localization of TA proteins occurs posttranslationally and is governed by the C-terminus, which contains the integral transmembrane domain (TMD) and targeting sequence. Targeting of TA proteins is dependent on the hydrophobicity of the TMD as well as the length and composition of flanking amino acid sequences. We previously identified an unusual homologue of elongator protein, Elp3, in the apicomplexan parasite Toxoplasma gondii as a TA protein targeting the outer mitochondrial membrane. We sought to gain further insight into TA proteins and their targeting mechanisms using this early-branching eukaryote as a model. Our bioinformatics analysis uncovered 59 predicted TA proteins in Toxoplasma, 9 of which were selected for follow-up analyses based on representative features. We identified novel TA proteins that traffic to specific organelles in Toxoplasma, including the parasite endoplasmic reticulum, mitochondrion, and Golgi apparatus. Domain swap experiments elucidated that targeting of TA proteins to these specific organelles was strongly influenced by the TMD sequence, including charge of the flanking C-terminal sequence.


Assuntos
Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Sequência de Aminoácidos , Transporte Biológico/fisiologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Mitocôndrias/metabolismo , Ligação Proteica/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Estrutura Terciária de Proteína
5.
Blood Cells Mol Dis ; 57: 50-3, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26852655

RESUMO

A genome-wide association study was performed on 1130 premenopausal women to detect common variants associated with three serum iron-related phenotypes. Total iron binding capacity was strongly associated (p=10(-14)) with variants in and near the TF gene (transferrin), the serum iron transporting protein, and with variants in HFE (p=4×10(-7)), which encodes the human hemochromatosis gene. Association was also detected between percent iron saturation (p=10(-8)) and variants in the chromosome 6 region containing both HFE and SLC17A2, which encodes a phosphate transport protein. No significant associations were detected with serum iron, but variants in HFE were suggestive (p=10(-6)). Our results corroborate prior studies in older subjects and demonstrate that the association of these genetic variants with iron phenotypes can be detected in premenopausal women.


Assuntos
Hemocromatose/genética , Antígenos de Histocompatibilidade Classe I/genética , Ferro/sangue , Proteínas de Membrana/genética , Pré-Menopausa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo I/genética , Transferrina/genética , Adulto , Cromossomos Humanos Par 6/química , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Hemocromatose/sangue , Hemocromatose/etnologia , Hemocromatose/patologia , Proteína da Hemocromatose , Humanos , Pessoa de Meia-Idade , Fenótipo , Polimorfismo Genético , Pré-Menopausa/sangue , Análise de Sequência de DNA , População Branca
6.
Microbiol Spectr ; 12(1): e0310723, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38063389

RESUMO

IMPORTANCE: Tuberculosis (TB) remains one of the world's leading infectious disease killers, despite available treatments. Although highly sensitive molecular diagnostics are available, expensive equipment and poor infrastructure have hindered their implementation in low-resource settings. Furthermore, the collection of sputum poses challenges as it is difficult for patients to produce and creates dangerous aerosols. This manuscript explores tongue swabs as a promising alternative to sputum collection. While previous studies have explored the sensitivity of tongue swabs as compared to sputum, existing literature has not addressed the need to standardize and simplify laboratory processing for easy implementation in high TB burden areas. This manuscript provides the first evidence that detection of TB from a tongue swab is possible without the use of DNA extraction or purification steps. The data provided in this manuscript will improve the collection and testing of tongue swabs for the diagnosis of TB disease.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Escarro , Tuberculose/diagnóstico , Língua , Reação em Cadeia da Polimerase
7.
Diabetes ; 73(3): 461-473, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055903

RESUMO

As professional secretory cells, ß-cells require adaptable mRNA translation to facilitate a rapid synthesis of proteins, including insulin, in response to changing metabolic cues. Specialized mRNA translation programs are essential drivers of cellular development and differentiation. However, in the pancreatic ß-cell, the majority of factors identified to promote growth and development function primarily at the level of transcription. Therefore, despite its importance, the regulatory role of mRNA translation in the formation and maintenance of functional ß-cells is not well defined. In this study, we have identified a translational regulatory mechanism mediated by the specialized mRNA translation factor eukaryotic initiation factor 5A (eIF5A), which facilitates the maintenance of ß-cell identity and function. The mRNA translation function of eIF5A is only active when it is posttranslationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS). We have discovered that the absence of ß-cell DHPS in mice reduces the synthesis of proteins critical to ß-cell identity and function at the stage of ß-cell maturation, leading to a rapid and reproducible onset of diabetes. Therefore, our work has revealed a gatekeeper of specialized mRNA translation that permits the ß-cell, a metabolically responsive secretory cell, to maintain the integrity of protein synthesis necessary during times of induced or increased demand.


Assuntos
Células Secretoras de Insulina , Fatores de Iniciação de Peptídeos , Animais , Camundongos , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Células Secretoras de Insulina/metabolismo , Biossíntese de Proteínas , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo
8.
Bioinformatics ; 28(14): 1879-86, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22611130

RESUMO

MOTIVATION: One of the fundamental questions in genetics study is to identify functional DNA variants that are responsible to a disease or phenotype of interest. Results from large-scale genetics studies, such as genome-wide association studies (GWAS), and the availability of high-throughput sequencing technologies provide opportunities in identifying causal variants. Despite the technical advances, informatics methodologies need to be developed to prioritize thousands of variants for potential causative effects. RESULTS: We present regSNPs, an informatics strategy that integrates several established bioinformatics tools, for prioritizing regulatory SNPs, i.e. the SNPs in the promoter regions that potentially affect phenotype through changing transcription of downstream genes. Comparing to existing tools, regSNPs has two distinct features. It considers degenerative features of binding motifs by calculating the differences on the binding affinity caused by the candidate variants and integrates potential phenotypic effects of various transcription factors. When tested by using the disease-causing variants documented in the Human Gene Mutation Database, regSNPs showed mixed performance on various diseases. regSNPs predicted three SNPs that can potentially affect bone density in a region detected in an earlier linkage study. Potential effects of one of the variants were validated using luciferase reporter assay.


Assuntos
Biologia Computacional/métodos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Área Sob a Curva , Sítios de Ligação , Bases de Dados Genéticas , Ligação Genética , Genoma Humano , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Fenótipo , Curva ROC
9.
HGG Adv ; 4(3): 100206, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37333770

RESUMO

DHPS deficiency is a rare genetic disease caused by biallelic hypomorphic variants in the Deoxyhypusine synthase (DHPS) gene. The DHPS enzyme functions in mRNA translation by catalyzing the post-translational modification, and therefore activation, of eukaryotic initiation factor 5A (eIF5A). The observed clinical outcomes associated with human mutations in DHPS include developmental delay, intellectual disability, and seizures. Therefore, to increase our understanding of this rare disease, it is critical to determine the mechanisms by which mutations in DHPS alter neurodevelopment. In this study, we have generated patient-derived lymphoblast cell lines and demonstrated that human DHPS variants alter DHPS protein abundance and impair enzyme function. Moreover, we observe a shift in the abundance of the post-translationally modified forms of eIF5A; specifically, an increase in the nuclear localized acetylated form (eIF5AAcK47) and concomitant decrease in the cytoplasmic localized hypusinated form (eIF5AHYP). Generation and characterization of a mouse model with a genetic deletion of Dhps in the brain at birth shows that loss of hypusine biosynthesis impacts neuronal function due to impaired eIF5AHYP-dependent mRNA translation; this translation defect results in altered expression of proteins required for proper neuronal development and function. This study reveals new insight into the biological consequences and molecular impact of human DHPS deficiency and provides valuable information toward the goal of developing treatment strategies for this rare disease.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Fatores de Iniciação de Peptídeos , Doenças Raras , Animais , Humanos , Recém-Nascido , Camundongos , Homeostase/genética , Mutação , Fatores de Iniciação de Peptídeos/genética , Processamento de Proteína Pós-Traducional/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Fator de Iniciação de Tradução Eucariótico 5A
10.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37162889

RESUMO

As professional secretory cells, beta cells require adaptable mRNA translation to facilitate a rapid synthesis of proteins, including insulin, in response to changing metabolic cues. Specialized mRNA translation programs are essential drivers of cellular development and differentiation. However, in the pancreatic beta cell, the majority of factors identified to promote growth and development function primarily at the level of transcription. Therefore, despite its importance, the regulatory role of mRNA translation in the formation and maintenance of functional beta cells is not well defined. In this study, we have identified a translational regulatory mechanism in the beta cell driven by the specialized mRNA translation factor, eukaryotic initiation factor 5A (eIF5A), which facilitates beta cell maturation. The mRNA translation function of eIF5A is only active when it is post-translationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS). We have discovered that the absence of beta cell DHPS in mice reduces the synthesis of proteins critical to beta cell identity and function at the stage of beta cell maturation, leading to a rapid and reproducible onset of diabetes. Therefore, our work has revealed a gatekeeper of specialized mRNA translation that permits the beta cell, a metabolically responsive secretory cell, to maintain the integrity of protein synthesis necessary during times of induced or increased demand. ARTICLE HIGHLIGHTS: Pancreatic beta cells are professional secretory cells that require adaptable mRNA translation for the rapid, inducible synthesis of proteins, including insulin, in response to changing metabolic cues. Our previous work in the exocrine pancreas showed that development and function of the acinar cells, which are also professional secretory cells, is regulated at the level of mRNA translation by a specialized mRNA translation factor, eIF5A HYP . We hypothesized that this translational regulation, which can be a response to stress such as changes in growth or metabolism, may also occur in beta cells. Given that the mRNA translation function of eIF5A is only active when the factor is post-translationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS), we asked the question: does DHPS/eIF5A HYP regulate the formation and maintenance of functional beta cells? We discovered that in the absence of beta cell DHPS in mice, eIF5A is not hypusinated (activated), which leads to a reduction in the synthesis of critical beta cell proteins that interrupts pathways critical for identity and function. This translational regulation occurs at weaning age, which is a stage of cellular stress and maturation for the beta cell. Therefore without DHPS/eIF5A HYP , beta cells do not mature and mice progress to hyperglycemia and diabetes. Our findings suggest that secretory cells have a mechanism to regulate mRNA translation during times of cellular stress. Our work also implies that driving an increase in mRNA translation in the beta cell might overcome or possibly reverse the beta cell defects that contribute to early dysfunction and the progression to diabetes.

11.
Int J Infect Dis ; 117: 287-294, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35149246

RESUMO

OBJECTIVES: This study assesses and compares the performance of different swab types and specimen collection sites for SARS-CoV-2 testing, to reference standard real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and viral culture. METHODS: Symptomatic adults with COVID-19 who visited routine COVID-19 testing sites used spun polyester and FLOQSwabs to self-collect specimens from the anterior nares and tongue. We evaluated the self-collected specimen from anterior nares and tongue swabs for the nucleocapsid (N) or spike (S) antigen of SARS-CoV-2 by RT-PCR and then compared these results with results from RT-PCR and viral cultures from nurse-collected nasopharyngeal swabs. RESULTS: Diagnostic sensitivity was highest for RT-PCR testing conducted using specimens from the anterior nares collected on FLOQSwabs (84%; 95% CI 68-94%) and spun polyester swabs (82%; 95% CI 66-92%), compared to RT-PCR tests conducted using specimens from nasopharyngeal swabs. Relative to viral culture from nasopharyngeal swabs, diagnostic sensitivities were higher for RT-PCR and antigen testing of anterior nares swabs (91-100%) than that of tongue swabs (18-81%). Antigen testing of anterior nares swabs had higher sensitivities against viral culture (91%) than against nasopharyngeal RT-PCR (38-70%). All investigational tests had high specificity compared with nasopharyngeal RT-PCR. Spun polyester swabs are equally effective as FLOQSwabs for anterior nasal RT-PCR testing. CONCLUSIONS: We found that anterior nares specimens were more sensitive than tongue swab specimens or antigen testing for detecting SARS-CoV-2 by RT-PCR. Thus, self-collected anterior nares specimens may represent an alternative method for diagnostic SARS-CoV-2 testing in some settings.


Assuntos
COVID-19 , Ácidos Nucleicos , Adulto , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Nasofaringe , Nucleocapsídeo/genética , Reação em Cadeia da Polimerase , SARS-CoV-2/genética , Sensibilidade e Especificidade , Manejo de Espécimes/métodos , Língua
12.
PLoS One ; 16(4): e0245423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33852576

RESUMO

BACKGROUND: In order to identify an inexpensive yet highly stable SARS-CoV-2 collection device as an alternative to foam swabs stored in transport media, both contrived ("surrogate") CoV-positive and patient-collected spun polyester swabs stored in dry tubes were evaluated for time- and temperature-stability using qPCR. METHODS: Surrogate specimens were prepared by combining multiple, residual SARS-CoV-2-positive clinical specimens and diluting to near-LOD levels in either porcine or human mucus ("matrix"), inoculating foam or polyester nasal swabs, and sealing in dry tubes. Swabs were then subjected to one of three temperature excursions: (1) 4°C for up to 72 hours; (2) 40°C for 12 hours, followed by 32°C for up to 60 hours; or (3) multiple freeze-thaw cycles (-20°C). The stability of extracted SARS-CoV-2 RNA for each condition was evaluated by qPCR. Separate usability studies for the dry polyester swab-based HealthPulse@home COVID-19 Specimen Collection Kit were later conducted in both adult and pediatric populations. RESULTS: Polyester swabs stored dry demonstrated equivalent performance to foam swabs for detection of low and moderate SARS-CoV-2 viral loads. Mimicking warm- and cold- climate shipment, surrogate specimens were stable following either 72 hours of a high-temperature excursion or two freeze-thaw cycles. In addition, usability studies comprised of self-collected patient specimens yielded sufficient material for molecular testing, as demonstrated by RNase P detection. CONCLUSIONS: Polyester nasal swabs stored in dry collection tubes offer a robust and inexpensive self-collection method for SARS-CoV-2 viral load testing, as viral RNA remains stable under conditions required for home collection and shipment to the laboratory.


Assuntos
COVID-19/diagnóstico , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos , Animais , Teste para COVID-19/métodos , Técnicas de Laboratório Clínico/métodos , Testes Diagnósticos de Rotina/métodos , Humanos , Técnicas de Diagnóstico Molecular , Nasofaringe/virologia , Poliésteres , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , Suínos
13.
Am J Med Genet A ; 152A(4): 896-903, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20358599

RESUMO

The GALNT3 gene encodes GalNAc-T3, which prevents degradation of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Biallelic mutations in either GALNT3 or FGF23 result in hyperphosphatemic familial tumoral calcinosis or its variant, hyperostosis-hyperphosphatemia syndrome. Tumoral calcinosis is characterized by the presence of ectopic calcifications around major joints, whereas hyperostosis-hyperphosphatemia syndrome is characterized by recurrent long bone lesions with hyperostosis. Here we investigated four patients with hyperphosphatemia and clinical manifestations including tumoral calcinosis and/or hyperostosis-hyperphosphatemia syndrome to determine underlying genetic cause and delineate phenotypic heterogeneity of these disorders. Mutational analysis of FGF23 and GALNT3 in these patients revealed novel homozygous mutations in GALNT3. Although the presence of massive calcifications, cortical hyperostosis, or dental anomalies was not shared by all patients, all had persistent hyperphosphatemia. Three of the patients also had inappropriately normal 1,25-dihyroxyvitamin D [1,25(OH)(2)D] and confirmed low circulating intact FGF23 concentrations. The four novel GALNT3 mutations invariably resulted in hyperphosphatemia as a result of low intact FGF23, but other clinical manifestations were variable. Therefore, tumoral calcinosis and hyperostosis-hyperphosphatemia syndrome represent a continuous spectrum of the same disease caused by increased phosphate levels, rather than two distinct disorders.


Assuntos
Calcinose/enzimologia , Calcinose/genética , Mutação/genética , N-Acetilgalactosaminiltransferases/genética , Neoplasias/enzimologia , Neoplasias/genética , Adolescente , Adulto , Sequência de Bases , Calcinose/complicações , Calcinose/diagnóstico por imagem , Criança , Pré-Escolar , Análise Mutacional de DNA , Família , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Masculino , Dados de Sequência Molecular , Neoplasias/complicações , Neoplasias/diagnóstico por imagem , Radiografia , Adulto Jovem , Polipeptídeo N-Acetilgalactosaminiltransferase
14.
Islets ; 12(5): 99-107, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32715853

RESUMO

Type 1 diabetes (T1D) is a disease characterized by destruction of the insulin-producing beta cells. Currently, there remains a critical gap in our understanding of how to reverse or prevent beta cell loss in individuals with T1D. Previous studies in mice discovered that pharmacologically inhibiting polyamine biosynthesis using difluoromethylornithine (DFMO) resulted in preserved beta cell function and mass. Similarly, treatment of non-obese diabetic mice with the tyrosine kinase inhibitor Imatinib mesylate reversed diabetes. The promising findings from these animal studies resulted in the initiation of two separate clinical trials that would repurpose either DFMO (NCT02384889) or Imatinib (NCT01781975) and determine effects on diabetes outcomes; however, whether these drugs directly stimulated beta cell growth remained unknown. To address this, we used the zebrafish model system to determine pharmacological impact on beta cell regeneration. After induction of beta cell death, zebrafish embryos were treated with either DFMO or Imatinib. Neither drug altered whole-body growth or exocrine pancreas length. Embryos treated with Imatinib showed no effect on beta cell regeneration; however, excitingly, DFMO enhanced beta cell regeneration. These data suggest that pharmacological inhibition of polyamine biosynthesis may be a promising therapeutic option to stimulate beta cell regeneration in the setting of diabetes.


Assuntos
Células Secretoras de Insulina/fisiologia , Poliaminas/metabolismo , Animais , Eflornitina/farmacologia , Imunofluorescência , Mesilato de Imatinib/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Regeneração/efeitos dos fármacos , Peixe-Zebra/embriologia
15.
PLoS One ; 15(3): e0230627, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32208453

RESUMO

The gene encoding eukaryotic initiation factor 5A (EIF5A) is found in diabetes-susceptibility loci in mouse and human. eIF5A is the only protein known to contain hypusine (hydroxyputrescine lysine), a polyamine-derived amino acid formed post-translationally in a reaction catalyzed by deoxyhypusine synthase (DHPS). Previous studies showed pharmacologic blockade of DHPS in type 1 diabetic NOD mice and type 2 diabetic db/db mice improved glucose tolerance and preserved beta cell mass, which suggests that hypusinated eIF5A (eIF5AHyp) may play a role in diabetes pathogenesis by direct action on the beta cells and/or altering the adaptive or innate immune responses. To translate these findings to human, we examined tissue from individuals with and without type 1 and type 2 diabetes to determine the expression of eIF5AHyp. We detected eIF5AHyp in beta cells, exocrine cells and immune cells; however, there was also unexpected enrichment of eIF5AHyp in pancreatic polypeptide-expressing PP cells. Interestingly, the presence of eIF5AHyp co-expressing PP cells was not enhanced with disease. These data identify new aspects of eIF5A biology and highlight the need to examine human tissue to understand disease.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/patologia , Lisina/análogos & derivados , Pâncreas/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Baço/metabolismo , Adulto , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Células Secretoras de Polipeptídeo Pancreático/citologia , Células Secretoras de Polipeptídeo Pancreático/metabolismo , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Adulto Jovem , Fator de Iniciação de Tradução Eucariótico 5A
16.
PLoS One ; 15(10): e0241100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33108384

RESUMO

Both polyester and foam nasal swabs were collected from convalescent COVID-19 patients at a single visit and stored in viral transport media (VTM), saline or dry. Sensitivity of each swab material and media combination were estimated, three by three tables were constructed to measure polyester and foam concordance, and cycle threshold (Ct) values were compared. 126 visits had polyester and foam swabs stored in viral transport media (VTM), 51 had swabs stored in saline, and 63 had a foam swab in VTM and a polyester swab stored in a dry tube. Polyester and foam swabs had an estimated sensitivity of 87.3% and 94.5% respectively in VTM, 87.5% and 93.8% respectively in saline, and 75.0% and 90.6% respectively for dry polyester and foam VTM. Polyester and foam Ct values were correlated, but polyester showed decreased performance for cases with a viral load near the detection threshold and higher Ct values on average.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas de Laboratório Clínico , Convalescença , Infecções por Coronavirus/virologia , Cavidade Nasal/virologia , Pandemias , Pneumonia Viral/virologia , Poliésteres , Poliuretanos , Manejo de Espécimes/instrumentação , Adulto , Betacoronavirus/genética , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/diagnóstico , Meios de Cultura , Equipamentos Descartáveis/provisão & distribuição , Feminino , Pessoal de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/diagnóstico , RNA Viral/análise , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Solução Salina , Sensibilidade e Especificidade , Manejo de Espécimes/métodos , Carga Viral
17.
PLoS One ; 13(1): e0189688, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293520

RESUMO

Radical S-adenosylmethionine (rSAM) enzymes use a 5'-deoxyadensyl 5'-radical to methylate a wide array of diverse substrates including proteins, lipids and nucleic acids. One such enzyme, Elongator protein-3 (TgElp3), is an essential protein in Toxoplasma gondii, a protozoan parasite that can cause life-threatening opportunistic disease. Unlike Elp3 homologues which are present in all domains of life, TgElp3 localizes to the outer mitochondrial membrane (OMM) via a tail-anchored trafficking mechanism in Toxoplasma. Intriguingly, we identified a second tail-anchored rSAM domain containing protein (TgRlmN) that also localizes to the OMM. The transmembrane domain (TMD) on Toxoplasma Elp3 and RlmN homologues is required for OMM localization and has not been seen beyond the chromalveolates. Both TgElp3 and TgRlmN contain the canonical rSAM amino acid sequence motif (CxxxCxxC) necessary to form the 4Fe-4S cluster required for tRNA modifications. In E. coli, RlmN is responsible for the 2-methlyadenosine (m2A) synthesis at purine 37 in tRNA while in S. cerevisiae, Elp3 is necessary for the formation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at the wobble tRNA position. To investigate why these two rSAM enzymes localize to the mitochondrion in Toxoplasma, and whether or not TgRlmN and TgElp3 possess tRNA methyltransferase activity, a series of mutational and biochemical studies were performed. Overexpression of either TgElp3 or TgRlmN resulted in a significant parasite replication defect, but overexpression was tolerated if either the TMD or rSAM domain was mutated. Furthermore, we show the first evidence that Toxoplasma tRNAGlu contains the mcm5s2U modification, which is the putative downstream product generated by TgElp3 activity.


Assuntos
Enzimas/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Toxoplasma/crescimento & desenvolvimento
18.
mSphere ; 1(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303695

RESUMO

Toxoplasma gondii is a widespread protozoan parasite that causes potentially life-threatening opportunistic disease. New inhibitors of parasite replication are urgently needed, as the current antifolate treatment is also toxic to patients. Microtubules are essential cytoskeletal components that have been selectively targeted in microbial pathogens; further study of tubulin in Toxoplasma may reveal novel therapeutic opportunities. It has been noted that α-tubulin acetylation at lysine 40 (K40) is enriched during daughter parasite formation, but the impact of this modification on Toxoplasma division and the enzyme mediating its delivery have not been identified. We performed mutational analyses to provide evidence that K40 acetylation stabilizes Toxoplasma microtubules and is required for parasite replication. We also show that an unusual Toxoplasma homologue of α-tubulin acetyltransferase (TgATAT) is expressed in a cell cycle-regulated manner and that its expression peaks during division. Disruption of TgATAT with CRISPR/Cas9 ablates K40 acetylation and induces replication defects; parasites appear to initiate mitosis yet exhibit incomplete or improper nuclear division. Together, these findings establish the importance of tubulin acetylation, exposing a new vulnerability in Toxoplasma that could be pharmacologically targeted. IMPORTANCE Toxoplasma gondii is an opportunistic parasite that infects at least one-third of the world population. New treatments for the disease (toxoplasmosis) are needed since current drugs are toxic to patients. Microtubules are essential cellular structures built from tubulin that show promise as antimicrobial drug targets. Microtubules can be regulated by chemical modification, such as acetylation on lysine 40 (K40). To determine the role of K40 acetylation in Toxoplasma and whether it is a liability to the parasite, we performed mutational analyses of the α-tubulin gene. Our results indicate that parasites cannot survive without K40 acetylation unless microtubules are stabilized with a secondary mutation. Additionally, we identified the parasite enzyme that acetylates α-tubulin (TgATAT). Genetic disruption of TgATAT caused severe defects in parasite replication, further highlighting the importance of α-tubulin K40 acetylation in Toxoplasma and its promise as a potential new drug target.

19.
Bone ; 86: 98-105, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26965530

RESUMO

Fibroblast growth factor 23 (FGF23) circulates as active protein and inactive fragments. Low iron status increases FGF23 gene expression, and iron deficiency is common. We hypothesized that in healthy premenopausal women, serum iron influences C-terminal and intact FGF23 concentrations, and that iron and FGF23 associate with bone mineral density (BMD). Serum iron, iron binding capacity, percent iron saturation, phosphorus, and other biochemistries were measured in stored fasting samples from healthy premenopausal white (n=1898) and black women (n=994), age 20-55years. Serum C-terminal and intact FGF23 were measured in a subset (1631 white and 296 black women). BMD was measured at the lumbar spine and femur neck. Serum phosphorus, calcium, alkaline phosphatase and creatinine were lower in white women than black women (p<0.001). Serum iron (p<0.0001) and intact FGF23 (p<0.01) were higher in white women. C-terminal FGF23 did not differ between races. Phosphorus correlated with intact FGF23 (white women, r=0.120, p<0.0001; black women r=0.163, p<0.01). However, phosphorus correlated with C-terminal FGF23 only in black women (r=0.157, p<0.01). Intact FGF23 did not correlate with iron. C-terminal FGF23 correlated inversely with iron (white women r=-0.134, p<0.0001; black women r=-0.188, p<0.01), having a steeper slope at iron <50mcg/dl than ≥50mcg/dl. Longitudinal changes in iron predicted changes in C-terminal FGF23. Spine BMD correlated with iron negatively (r=-0.076, p<0.01) in white women; femur neck BMD correlated with iron negatively (r=-0.119, p<0.0001) in black women. Both relationships were eliminated in weight-adjusted models. BMD did not correlate with FGF23. Serum iron did not relate to intact FGF23, but was inversely related to C-terminal FGF23. Intact FGF23 correlated with serum phosphorus. In weight-adjusted models, BMD was not related to intact FGF23, C-terminal FGF23 or iron. The influence of iron on FGF23 gene expression is not important in determining bone density in healthy premenopausal women.


Assuntos
Densidade Óssea , Fatores de Crescimento de Fibroblastos/sangue , Ferro/sangue , Pré-Menopausa/sangue , Adulto , Estudos de Coortes , Feminino , Colo do Fêmur/fisiologia , Fator de Crescimento de Fibroblastos 23 , Humanos , Estudos Longitudinais , Vértebras Lombares/fisiologia , Análise Multivariada , População Branca
20.
Bone ; 60: 87-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24325979

RESUMO

BACKGROUND: Excess fibroblast growth factor 23 (FGF23) causes hypophosphatemia in autosomal dominant hypophosphatemic rickets (ADHR) and X-linked hypophosphatemia (XLH). Iron status influences C-terminal FGF23 (incorporating fragments plus intact FGF23) in ADHR and healthy subjects, and intact FGF23 in ADHR. We hypothesized that in XLH serum iron would inversely correlate to C-terminal FGF23, but not to intact FGF23, mirroring the relationships in normal controls. METHODS: Subjects included 25 untreated outpatients with XLH at a tertiary medical center and 158 healthy adult controls. Serum iron and plasma intact FGF23 and C-terminal FGF23 were measured in stored samples. RESULTS: Intact FGF23 was greater than the control mean in 100% of XLH patients, and >2SD above the control mean in 88%, compared to 71% and 21% respectively for C-terminal FGF23. In XLH, iron correlated negatively to log-C-terminal FGF23 (r=-0.523, p<0.01), with a steeper slope than in controls (p<0.001). Iron was not related to log-intact FGF23 in either group. The log-ratio of intact FGF23 to C-terminal FGF23 was higher in XLH (0.00±0.44) than controls (-0.28±0.21, p<0.01), and correlated positively to serum iron (controls r=0.276, p<0.001; XLH r=0.428, p<0.05), with a steeper slope in XLH (p<0.01). CONCLUSION: Like controls, serum iron in XLH is inversely related to C-terminal FGF23 but not intact FGF23. XLH patients are more likely to have elevated intact FGF23 than C-terminal FGF23. The relationships of iron to FGF23 in XLH suggest that altered regulation of FGF23 cleaving may contribute to maintaining hypophosphatemia around an abnormal set-point.


Assuntos
Raquitismo Hipofosfatêmico Familiar/sangue , Fatores de Crescimento de Fibroblastos/sangue , Ferro/sangue , Adulto , Bioensaio , Estudos de Casos e Controles , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Masculino , Padrões de Referência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA