Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(8): 234, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844667

RESUMO

Bradyrhizobia are the principal symbiotic partner of the leguminous plant and take active part in biological nitrogen-fixation. The present investigation explores the underlying competition among different strains during colonization in host roots. Six distinct GFP and RFP-tagged Bradyrhizobium strains were engineered to track them inside the peanut roots either independently or in combination. The Bradyrhizobium strains require different time-spans ranging from 4 to 21 days post-infection (dpi) for successful colonization which further varies in presence of another strain. While most of the individual strains enhanced the shoot and root dry weight, number of nodules, and nitrogen fixation capabilities of the host plants, no significant enhancement of plant growth and nodulation efficiency was observed when they were allowed to colonize in combinations. However, if among the combinations one strains is SEMIA 6144, the co-infection results in higher growth and nodulation efficiency of the hosts. From the competition experiments it has been found that Bradyrhizobium japonicum SEMIA 6144 was found to be the most dominant strain for effective nodulation in peanut. The extent of biofilm and exopolysaccharide (EPS) production by these isolates, individually or in combinations, were envisaged to correlate whether these parameters have any impact on the symbiotic association. But the extent of colonization, growth-promotion and nitrogen-fixation ability drastically lowered when a strain present together with other Bradyrhizobium strain. Therefore, it is imperative to understand the interaction between two co-inoculating Bradyrhizobium species for nodulation followed by plant growth promotion to develop suitable consortia for enhancing BNF in peanut and possibly for other legumes.


Assuntos
Arachis , Biofilmes , Bradyrhizobium , Fixação de Nitrogênio , Nodulação , Raízes de Plantas , Nódulos Radiculares de Plantas , Simbiose , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Bradyrhizobium/crescimento & desenvolvimento , Bradyrhizobium/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Polissacarídeos Bacterianos/metabolismo , Interações Microbianas , Desenvolvimento Vegetal
2.
Indian J Microbiol ; 54(4): 471-3, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25320448

RESUMO

Haloarchaea are predominant in the salt crystallizers of the Rann of Kutch when the concentration of salts approaches saturation levels. The obligate and extreme halophilic archaeon 3A1-DGR, isolated from a salt crystallizer pond of the Little Rann of Kutch, India, needs minimum of 10 % NaCl in the growth medium. To understand the mechanism(s) of osmotolerance and adaptation at extreme osmolarity, and to mine relevant gene(s), the genome of this haloarchaeon, 3A1-DGR, was sequenced. We report here, the 2.88 Mb draft genome sequence of the haloarchaeon 3A1-DGR, with G+C content of 68 % and the possible involvement of 43 genes in stress tolerance. Further studies of the genome of this haloarchaeon would be required to identify gene(s) that might be responsible for imparting extreme osmotolerance.

3.
Front Microbiol ; 12: 650771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936008

RESUMO

The development of salinity affects 7% of the world's land surface, acting as a major constraint to crop productivity. This study attempted to use the co-evolving endophytes of peanut to alleviate salinity stress and enhance the yield of peanut. Diverse and different tissue colonizing endophytes were isolated from peanut and screened in vitro by seed germination bioassay imposing gradients of salinity, with two cultivars TG37A (susceptible) and GG2 (moderately resistant), in potted conditions using saline irrigation water. Finally, nine endophytes capable of producing IAA and ACC-deaminase, promoting root growth and yield in potted conditions were selected for further evaluation in field conditions. They were evaluated with saline water (1.5-2.0 dS/m) in saline soil with susceptible cultivar TG37A. Simultaneously, three endophytes (Bacillus firmus J22N; Bacillus tequilensis SEN15N; and Bacillus sp. REN51N) were evaluated with two cultivars, GG2 and TG37A, during rainy and post-rainy seasons with elevated salinity. The application of endophytes like Bacillus firmus J22N and Bacillus sp. REN51N enhanced the pod and haulm yield of peanuts by 14-19% across cultivars, salinity, and seasons. In addition, there was significant modulation in parameters like relative water content; production of enzymes like superoxide dismutase (SOD), glutathione reductase (GR), catalase (CAT), ascorbate peroxidase (APX), lipid peroxidase (POD), and H2O2 content in leaf; and uptake of potassium. The activities of the enzymes involved in scavenging reactive oxygen species (ROS) increased with salinity, and further increased with endophytes like Bacillus firmus J22N, Bacillus tequilensis SEN15N, and Bacillus sp. REN51N. There was an enhanced accumulation of proline, reduced level of phenol and H2O2, and enhanced uptake of potassium with the inoculation of endophytes. This improved scavenging capacity of plants by endophytic modulation of ROS scavengers, uptake of K, production of ACC deaminase and IAA, root and biomass growth, modulation in relative water content, and enhanced accumulation of osmoprotectant might be the reasons of alleviation of salinity stress. Endophytes could have alleviated salinity stress in peanuts, indicating the mechanisms and potential of peanuts at the field level. These endophytes could be applied to bring agricultural sustainability to salinity-affected areas in the future. Furthermore, few genera viz. Kocuria, Brevundimonas, Agrococcus, Dietzia, and Kytococcus were observed in peanut tissue for the first time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA