Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Compr Rev Food Sci Food Saf ; 19(4): 1809-1834, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33337075

RESUMO

Agro-food systems are undergoing rapid innovation in the world and the system's continuum is promoted at different scales with one of the main outcomes to improve nutrition of consumers. Consumer knowledge through educational outreach is important to food and nutrition security and consumer demands guide breeding efforts. Maize is an important part of food systems. It is a staple food and together with rice and wheat, they provide 60% of the world's caloric intake. In addition to being a major contributor to global food and nutrition security, maize forms an important part of the culinary culture in many areas of Africa, the Americas, and Asia. Maize genetics are being exploited to improve human nutrition with the ultimate outcome of improving overall health. By impacting the health of maize consumers, market opportunities will be opened for maize producers with unique genotypes. Although maize is a great source of macronutrients, it is also a source of many micronutrients and phytochemicals purported to confer health benefits. The process of biofortification through traditional plant breeding has increased the protein, provitamin A carotenoid, and zinc contents of maize. The objective of this paper is to review the innovations developed and promoted to improve the nutritional profiles of maize and outcomes of the maize agro-food system.


Assuntos
Melhoramento Vegetal , Zea mays/química , Zea mays/genética , Carotenoides , Humanos , Micronutrientes , Proteínas de Vegetais Comestíveis , Vitamina A , Zinco
2.
J Nutr ; 148(8): 1236-1243, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137479

RESUMO

Background: Consumption of provitamin A carotenoid biofortified crops, such as maize, supports vitamin A (VA) status in animals and humans. Laying hens that consume ß-cryptoxanthin-biofortified maize deposit ß-cryptoxanthin into egg yolk. Objective: We investigated whether ß-cryptoxanthin-biofortified egg consumption would affect VA status of male Mongolian gerbils (Meriones unguiculatus) compared with white-yolked eggs. Methods: ß-Cryptoxanthin-biofortified egg yolk, produced in hens fed biofortified orange maize or tangerine-fortified maize feeds, was freeze-dried and fed to gerbils. White-yolked eggs were produced by feeding white maize to hens. Gerbils (n = 57) were fed VA-deficient feed for 28 d. After baseline (n = 7), treatments (n = 10/group) included oil control (VA-); 16.7% orange maize-biofortified, tangerine-fortified, or white-yolk egg feeds; or retinyl acetate as positive control (VA+) matched to daily preformed retinol intake from the eggs for 30 d. Preformed retinol did not differ between the egg yolks. Gerbil liver retinol, lipid, fatty acids, and cholesterol were determined. Results: Liver retinol concentration (0.13 ± 0.03 µmol/g) and total hepatic VA (0.52 ± 0.12 µmol) were higher in gerbils fed orange maize-biofortified eggs than in all other groups. The VA- group was severely VA deficient (0.018 ±0.010 µmol/g; P < 0.05). Liver retinol was similar among VA+, tangerine-egg-, and white-egg-fed gerbils, but retinol reserves were higher in tangerine-egg-fed gerbils (0.35 ± 0.11 µmol) than in VA+ or VA- gerbils or at baseline (P < 0.05). Liver fat was 3.6 times (P < 0.0001) and cholesterol was 2.1 times (P < 0.004) higher in egg-fed groups that experienced hepatosteatosis. Liver fatty acid profiles reflected feed, but retinyl ester fatty acids did not. Conclusions: The preformed retinol in the eggs enhanced gerbil VA status, and the ß-cryptoxanthin-biofortified eggs from hens fed orange maize prevented deficiency. Biofortified maize can enhance VA status when consumed directly or through products from livestock fed orange maize.


Assuntos
Ração Animal , beta-Criptoxantina/farmacologia , Galinhas , Ovos , Alimentos Fortificados , Fígado/metabolismo , Vitamina A/metabolismo , Tecido Adiposo/metabolismo , Criação de Animais Domésticos , Animais , Colesterol/sangue , Dieta , Fígado Gorduroso/metabolismo , Feminino , Gerbillinae , Gado , Masculino , Estado Nutricional , Zea mays/química
3.
Theor Appl Genet ; 131(7): 1443-1457, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29574570

RESUMO

KEY MESSAGE: Genome-wide association study (GWAS) on 923 maize lines and validation in bi-parental populations identified significant genomic regions for kernel-Zinc and-Iron in maize. Bio-fortification of maize with elevated Zinc (Zn) and Iron (Fe) holds considerable promise for alleviating under-nutrition among the world's poor. Bio-fortification through molecular breeding could be an economical strategy for developing nutritious maize, and hence in this study, we adopted GWAS to identify markers associated with high kernel-Zn and Fe in maize and subsequently validated marker-trait associations in independent bi-parental populations. For GWAS, we evaluated a diverse maize association mapping panel of 923 inbred lines across three environments and detected trait associations using high-density Single nucleotide polymorphism (SNPs) obtained through genotyping-by-sequencing. Phenotyping trials of the GWAS panel showed high heritability and moderate correlation between kernel-Zn and Fe concentrations. GWAS revealed a total of 46 SNPs (Zn-20 and Fe-26) significantly associated (P ≤ 5.03 × 10-05) with kernel-Zn and Fe concentrations with some of these associated SNPs located within previously reported QTL intervals for these traits. Three double-haploid (DH) populations were developed using lines identified from the panel that were contrasting for these micronutrients. The DH populations were phenotyped at two environments and were used for validating significant SNPs (P ≤ 1 × 10-03) based on single marker QTL analysis. Based on this analysis, 11 (Zn) and 11 (Fe) SNPs were found to have significant effect on the trait variance (P ≤ 0.01, R2 ≥ 0.05) in at least one bi-parental population. These findings are being pursued in the kernel-Zn and Fe breeding program, and could hold great value in functional analysis and possible cloning of high-value genes for these traits in maize.


Assuntos
Ferro/química , Polimorfismo de Nucleotídeo Único , Sementes/química , Zea mays/genética , Zinco/química , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas
4.
J Sci Food Agric ; 97(3): 793-801, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27173638

RESUMO

BACKGROUND: Biofortified maize is not only a good vehicle for provitamin A carotenoids for vitamin A deficient populations in developing countries but also a source of vitamin E, tocochromanols and phenolic compounds, which have antioxidant properties. Using high-performance liquid chromatography and a total antioxidant performance assay, the present study analyzed the antioxidant variation and antioxidant activity of 36 provitamin A improved maize hybrids and one common yellow maize hybrid. RESULTS: The ranges of major carotenoids in provitamin A carotenoids biofortified maize were zeaxanthin [1.2-13.2 µg g-1 dry weight (DW)], ß-cryptoxanthin (1.3-8.8 µg g-1 DW) and ß-carotene (1.3-8.0 µg g-1 DW). The ranges of vitamin E compounds identified in provitamin A carotenoids biofortified maize were α-tocopherol (3.4-34.3 µg g-1 DW), γ-tocopherol (5.9-54.4 µg g-1 DW), α-tocotrienol (2.6-19.5 µg g-1 DW) and γ-tocotrienol (45.4 µg g-1 DW). The ranges of phenolic compounds were γ-oryzanol (0.0-0.8 mg g-1 DW), ferulic acid (0.4-3.6 mg g-1 DW) and p-coumaric acid (0.1-0.45 mg g-1 DW). There was significant correlation between α-tocopherol and cis isomers of ß-carotene (P < 0.01). Tocotrienols were correlated with α-tocopherol and γ-oryzanol (P < 0.01). CONCLUSION: Genotype was significant in determining the variation in ß-cryptoxanthin, ß-carotene, α-tocopherol and γ-tocopherol contents (P < 0.01). A genotype × environment interaction was observed for γ-tocopherol content (P < 0.01). © 2016 Society of Chemical Industry.


Assuntos
Biofortificação , Carotenoides/análise , Provitaminas/análise , Sementes/química , Vitamina A/análise , Vitamina E/análise , Zea mays/química , Altitude , Antioxidantes/análise , Antioxidantes/metabolismo , Carotenoides/biossíntese , Clima , Ácidos Cumáricos/análise , Ácidos Cumáricos/metabolismo , Produtos Agrícolas/química , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Cruzamentos Genéticos , Interação Gene-Ambiente , Genótipo , Humanos , México , Valor Nutritivo , Fenóis/análise , Fenóis/metabolismo , Fenilpropionatos/análise , Fenilpropionatos/metabolismo , Melhoramento Vegetal , Propionatos , Provitaminas/biossíntese , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Especificidade da Espécie , Vitamina A/metabolismo , Vitamina E/biossíntese , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
5.
Plant Physiol ; 169(4): 2665-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26424159

RESUMO

The development of abiotic stress-resistant cultivars is of premium importance for the agriculture of developing countries. Further progress in maize (Zea mays) performance under stresses is expected by combining marker-assisted breeding with metabolite markers. In order to dissect metabolic responses and to identify promising metabolite marker candidates, metabolite profiles of maize leaves were analyzed and compared with grain yield in field trials. Plants were grown under well-watered conditions (control) or exposed to drought, heat, and both stresses simultaneously. Trials were conducted in 2010 and 2011 using 10 tropical hybrids selected to exhibit diverse abiotic stress tolerance. Drought stress evoked the accumulation of many amino acids, including isoleucine, valine, threonine, and 4-aminobutanoate, which has been commonly reported in both field and greenhouse experiments in many plant species. Two photorespiratory amino acids, glycine and serine, and myoinositol also accumulated under drought. The combination of drought and heat evoked relatively few specific responses, and most of the metabolic changes were predictable from the sum of the responses to individual stresses. Statistical analysis revealed significant correlation between levels of glycine and myoinositol and grain yield under drought. Levels of myoinositol in control conditions were also related to grain yield under drought. Furthermore, multiple linear regression models very well explained the variation of grain yield via the combination of several metabolites. These results indicate the importance of photorespiration and raffinose family oligosaccharide metabolism in grain yield under drought and suggest single or multiple metabolites as potential metabolic markers for the breeding of abiotic stress-tolerant maize.


Assuntos
Secas , Temperatura Alta , Metaboloma , Metabolômica/métodos , Folhas de Planta/metabolismo , Zea mays/metabolismo , Aminoácidos/metabolismo , Análise de Variância , Biomassa , Grão Comestível/metabolismo , Genótipo , Hibridização Genética , Oligossacarídeos/metabolismo , Folhas de Planta/genética , Análise de Componente Principal , Estações do Ano , Especificidade da Espécie , Estresse Fisiológico , Zea mays/classificação , Zea mays/genética
6.
Theor Appl Genet ; 128(5): 851-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25690716

RESUMO

KEY MESSAGE: Genome-wide association analysis in CIMMYT's association panel revealed new favorable native genomic variations in/nearby important genes such as hydroxylases and CCD1 that have potential for carotenoid biofortification in maize. Genome-wide association studies (GWAS) have been used extensively to identify allelic variation for genes controlling important agronomic and nutritional traits in plants. Provitamin A (proVA) enhancing alleles of lycopene epsilon cyclase (LCYE) and ß-carotene hydroxylase 1 (CRTRB1), previously identified through candidate-gene based GWAS, are currently used in CIMMYT's maize breeding program. The objective of this study was to identify genes or genomic regions controlling variation for carotenoid concentrations in grain for CIMMYT's carotenoid association mapping panel of 380 inbred maize lines, using high-density genome-wide platforms with ~476,000 SNP markers. Population structure effects were minimized by adjustments using principal components and kinship matrix with mixed models. Genome-wide linkage disequilibrium (LD) analysis indicated faster LD decay (3.9 kb; r (2) = 0.1) than commonly reported for temperate germplasm, and therefore the possibility of achieving higher mapping resolution with our mostly tropical diversity panel. GWAS for various carotenoids identified CRTRB1, LCYE and other key genes or genomic regions that govern rate-critical steps in the upstream pathway, such as DXS1, GGPS1, and GGPS2 that are known to play important roles in the accumulation of precursor isoprenoids as well as downstream genes HYD5, CCD1, and ZEP1, which are involved in hydroxylation and carotenoid degradation. SNPs at or near all of these regions were identified and may be useful target regions for carotenoid biofortification breeding efforts in maize; for example a genomic region on chromosome 2 explained ~16% of the phenotypic variance for ß-carotene independently of CRTRB1, and a variant of CCD1 that resulted in reduced ß-cryptoxanthin degradation was found in lines that have previously been observed to have low proVA degradation rates.


Assuntos
Carotenoides/biossíntese , Zea mays/genética , Alelos , Mapeamento Cromossômico , Genes de Plantas , Estudos de Associação Genética , Marcadores Genéticos , Liases Intramoleculares/genética , Modelos Lineares , Desequilíbrio de Ligação , Oxigenases de Função Mista/genética , Análise de Componente Principal
7.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38427914

RESUMO

Vitamin A deficiency remains prevalent on a global scale, including in regions where maize constitutes a high percentage of human diets. One solution for alleviating this deficiency has been to increase grain concentrations of provitamin A carotenoids in maize (Zea mays ssp. mays L.)-an example of biofortification. The International Maize and Wheat Improvement Center (CIMMYT) developed a Carotenoid Association Mapping panel of 380 inbred lines adapted to tropical and subtropical environments that have varying grain concentrations of provitamin A and other health-beneficial carotenoids. Several major genes have been identified for these traits, 2 of which have particularly been leveraged in marker-assisted selection. This project assesses the predictive ability of several genomic prediction strategies for maize grain carotenoid traits within and between 4 environments in Mexico. Ridge Regression-Best Linear Unbiased Prediction, Elastic Net, and Reproducing Kernel Hilbert Spaces had high predictive abilities for all tested traits (ß-carotene, ß-cryptoxanthin, provitamin A, lutein, and zeaxanthin) and outperformed Least Absolute Shrinkage and Selection Operator. Furthermore, predictive abilities were higher when using genome-wide markers rather than only the markers proximal to 2 or 13 genes. These findings suggest that genomic prediction models using genome-wide markers (and assuming equal variance of marker effects) are worthwhile for these traits even though key genes have already been identified, especially if breeding for additional grain carotenoid traits alongside ß-carotene. Predictive ability was maintained for all traits except lutein in between-environment prediction. The TASSEL (Trait Analysis by aSSociation, Evolution, and Linkage) Genomic Selection plugin performed as well as other more computationally intensive methods for within-environment prediction. The findings observed herein indicate the utility of genomic prediction methods for these traits and could inform their resource-efficient implementation in biofortification breeding programs.


Assuntos
Carotenoides , Genômica , Zea mays , Zea mays/genética , Zea mays/metabolismo , Carotenoides/metabolismo , Genômica/métodos , Grão Comestível/genética , Grão Comestível/metabolismo , Fenótipo , Característica Quantitativa Herdável , Genoma de Planta , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único
8.
Foods ; 12(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37509849

RESUMO

Zinc deficiency poses a significant health challenge worldwide, particularly in regions where access to and the affordability of dietary diversity are limited. This research article presents a time course analysis of kernel development on the zinc content in maize kernels with different genetic backgrounds, including normal maize, quality protein maize, and high-zinc maize, grown at two locations. Zn concentrations during stage I were high, decreasing between stages II and IV and increasing during stages V to VII. High-zinc kernel genotypes, including those ones with high-quality protein genetic backgrounds, have higher contents of zinc and iron during the milky stage (fresh/green maize). The zinc and iron content in fresh maize differed depending on the genotype. By consuming fresh maize biofortified with zinc, up to 89% and 100% of EAR needs can be fulfilled for pregnant women and children. The results demonstrate that fresh high-zinc maize accumulates a substantial amount of this micronutrient, highlighting its potential as a valuable source for addressing zinc deficiency.

9.
Theor Appl Genet ; 125(2): 235-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22450859

RESUMO

Biofortification for pro-vitamin A content (pVAC) of modern maize inbreds and hybrids is a feasible way to deal with vitamin A deficiency in rural areas in developing countries. The objective of this study was to evaluate the probability of success of breeding strategies when transferring the high pVAC present in donors to elite modern-adapted lines. For this purpose, a genetic model was built based on previous genetic studies, and different selection schemes including phenotypic selection (PS) and marker-assisted selection (MAS) were simulated and compared. MAS for simultaneously selecting all pVAC genes and a combined scheme for selecting two major pVAC genes by MAS followed by ultra performance liquid chromatography screening for the remaining genetic variation on pVAC were identified as being most effective and cost-efficient. The two schemes have 83.7 and 84.8% probabilities of achieving a predefined breeding target on pVAC and adaptation in one breeding cycle under the current breeding scale. When the breeding scale is increased by making 50% more crosses, the probability values could reach 94.8 and 95.1% for the two schemes. Under fixed resources, larger early generation populations with fewer crosses had similar breeding efficiency to smaller early generation populations with more crosses. Breeding on a larger scale was more efficient both genetically and economically. The approach presented in this study could be used as a general way in quantifying probability of success and comparing different breeding schemes in other breeding programs.


Assuntos
Cruzamento/métodos , Vitamina A/metabolismo , Zea mays/genética , Zea mays/metabolismo , Adaptação Biológica/genética , Cruzamento/economia , Simulação por Computador , Análise Custo-Benefício , Cruzamentos Genéticos , Genes de Plantas/genética , Genética Populacional , Genótipo , Modelos Genéticos , Fenótipo , Seleção Genética , Zea mays/economia
10.
Foods ; 11(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35885392

RESUMO

Maize is one of the three worldwide cereal crops with the most outstanding production; however, its postharvest losses range from 2 to 40% due to inadequate harvesting, drying, and storage technologies. This study focuses on the Instant Controlled Pressure Drop technology (DIC) effect on maize kernels' drying and rehydration kinetics. In total, 19 different DIC treatments were carried out on maize kernels (~25% d.b.). The DIC parameters studied were steam pressure (0.1 to 0.4 MPa) and treatment time (10 to 90 s). After DIC treatment, drying kinetics were carried out by Convective Air Drying (CAD) at 50 °C and 0.4 ms-1 airflow. Rehydration kinetics and Water Holding Capacity (WHC) were evaluated at 20 °C. In comparison to CAD samples, DIC (0.4 MPa and 90 s) reduced the drying time from 180 min to ~108 min. Additionally, regarding the rehydration and WHC results, DIC achieved the same moisture content in only 3.5 min that controls achieved after 1 h of rehydration (0.40 g H2O/g dry matter). Moreover, DIC (0.4 MPa and nine cycles of 10 s) increased the WHC 2.3 times compared to the control. In this way, DIC could be a postharvest technology to improve maize kernels' drying operations and functional properties.

11.
Insects ; 13(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36292825

RESUMO

Smallholder farmers who grow maize landraces face important challenges to preserve their seed biodiversity from one season to another. This study was carried out in the central highlands of Mexico to compare the effectiveness of two seed storage practices-specifically, polypropylene woven bags (farmers' conventional practice) vs. hermetic containers-for minimizing seed losses and maintaining germination. Four Mexican landraces were stored for three and six months. Data on moisture content and kernel damage were collected at the beginning and the end of the storage period. Pest-free samples collected were also analyzed for seed germination. Moisture content was below 13% overall and was not significantly affected by storage technology or storage time. Samples from the polypropylene woven bags suffered significant damage from Sitophilus zeamais and Prostephanus truncatus, with the percentages of insect damage and weight loss reaching 61.4% and 23.4%, respectively. Losses were minimal in seed stored in hermetic containers, with a maximum insect damage of 4.1% and weight loss of 2.2%. Overall, the germination rate of samples stored in these airtight containers was greater than 90%. This study provides additional evidence on the effectiveness of hermetic containers at maintaining Mexican landraces' seed quantity and quality during storage in smallholder conditions in central Mexico.

12.
Plant Foods Hum Nutr ; 66(2): 203-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21611770

RESUMO

The maize produced in the highlands of Mexico (>2,400 masl) is generally not accepted by the flour and masa and tortilla industry. The objective of this work was to evaluate the grain quality and tortilla properties of maize landraces commonly grown in the highlands of Mexico and compare them with improved germplasm (hybrids). Germplasm analysis included 11 landraces, 32 white hybrids, and six yellow hybrids. Grain quality was analyzed for a range of physical and chemical factors, as well as for alkaline cooking quality. Landrace grains tended to be heterogeneous in terms of size, hardness and color. All landraces had soft-intermediate grains with an average flotation index (FI) of 61%. In contrast, hybrid grains were homogenous in size and color, and harder than landrace grains, with a FI of 38%. Protein, free sugars, oil and phenolic content in landraces were higher than in the hybrids. Significant correlations were found between phenolic content and tortilla color (r= -0.60; p<0.001). Three landraces were identified as appropriate for the masa and tortilla industry, while all the hybrids evaluated fulfilled the requirements of this industry.


Assuntos
Farinha/análise , Zea mays/química , Zea mays/crescimento & desenvolvimento , Pão , Carboidratos/análise , Quimera , Cor , Culinária , Óleo de Milho/análise , México , Fenóis/análise , Proteínas de Plantas/análise
13.
Curr Res Food Sci ; 4: 279-286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997794

RESUMO

High kernel-zinc maize varieties are available to consumers in several countries in Latin America to contribute to increase the zinc intake of their populations. Minerals, phytic acid and amino acids retention were measured after processing six maize varieties including three high kernel-zinc, one quality protein maize and two conventional maize. Grain for each variety was processed into tortillas, arepas and mazamorra, common maize dishes in the region. To evaluate the effect of processing kernel-zinc maize varieties on zinc retention, varieties were grouped in zinc biofortified maize (ZBM) and non-ZBM. Iron, zinc, phytic acid, tryptophan and lysine concentrations in non-processed maize were 17.1-19.1 â€‹µg/g DW, 23.9-33.0 â€‹µg/g DW, 9.9-10.0 â€‹mg/g DW, 0.06-0.08% and 0.27-0.37%, respectively. In tortillas, the iron, zinc, phytic acid and lysine content did not change (p â€‹< â€‹0.05) compared to raw grain, while tryptophan decreased by 32%. True retention of iron in arepas and mazamorra was 43.9 and 60.0%, for zinc 36.8 and 41.3%, and for phytic acid 19.3 and 25.1%. Tortillas had higher zinc retention than arepas and mazamorra due to use of whole grain in the nixtamalization process. Therefore, to contribute to higher zinc intake, nixtamalized tortilla prepared with biofortified zinc maize is recommended. Additionally, promotion of whole grain flour to prepare arepas should be explored to enhance the intake of minerals that are usually confined to aleurone layers and germ.

14.
Sci Rep ; 11(1): 3696, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580081

RESUMO

We present an assessment of the extent, diversity, and nutritional contribution of the milpa through a quantitative analysis of data from a survey conducted in 989 small scale farm households in the Western Highlands of Guatemala (WHG). The milpa is a traditional agricultural system in which maize is intercropped with other species, such as common beans, faba beans, squashes or potatoes. Our study shows that more than two-thirds of the 1,205 plots recorded were under the milpa system, with a great diversity of crop combinations. As shown with the 357 plots for which specific yields were available, milpa systems present higher total productivity than monocropped maize, expressed as total energy yield of the harvested crops in the respective system, and were also better at providing the recommended daily allowances of fourteen essential nutrients, based on a Potential Nutrient Adequacy (PNA) indicator. Maize-bean-potato, maize-potato, and maize-bean-faba intercrops had the highest PNAs, and monocropped maize, the lowest. These results support the implementation of milpa systems tailored to different agro-ecologies in order to improve nutrition in the WHG and a variety of similar regions.

15.
PLoS One ; 16(6): e0252832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086831

RESUMO

Agri-food systems are besieged by malnutrition, yield gaps, and climate vulnerability, but integrated, research-based responses in public policy, agricultural, value chains, and finance are constrained by short-termism and zero sum thinking. As they respond to current and emerging agri-food system challenges, decision makers need new tools that steer toward multi-sector, evidence-based collaboration. To support national agri-food system policy processes, the Integrated Agri-food System Initiative (IASI) methodology was developed and validated through case studies in Mexico and Colombia. This holistic, multi-sector methodology builds on diverse existing data resources and leverages situation analysis, modeled predictions, and scenarios to synchronize public and private action at the national level toward sustainable, equitable, and inclusive agri-food systems. Culminating in collectively agreed strategies and multi-partner tactical plans, the IASI methodology enabled a multi-level systems approach by mobilizing design thinking to foster mindset shifts and stakeholder consensus on sustainable and scalable innovations that respond to real-time dynamics in complex agri-food systems. To build capacity for these types of integrated, context-specific approaches, greater investment is needed in supportive international institutions that function as trusted in-region 'innovation brokers.' This paper calls for a structured global network to advance adaptation and evolution of essential tools like the IASI methodology in support of the One CGIAR mandate and in service of positive agri-food systems transformation.


Assuntos
Agricultura , Mudança Climática , Alimentos , Investimentos em Saúde , Política Pública
16.
G3 (Bethesda) ; 10(8): 2629-2639, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32482728

RESUMO

Zinc (Zn) deficiency is a major risk factor for human health, affecting about 30% of the world's population. To study the potential of genomic selection (GS) for maize with increased Zn concentration, an association panel and two doubled haploid (DH) populations were evaluated in three environments. Three genomic prediction models, M (M1: Environment + Line, M2: Environment + Line + Genomic, and M3: Environment + Line + Genomic + Genomic x Environment) incorporating main effects (lines and genomic) and the interaction between genomic and environment (G x E) were assessed to estimate the prediction ability (rMP ) for each model. Two distinct cross-validation (CV) schemes simulating two genomic prediction breeding scenarios were used. CV1 predicts the performance of newly developed lines, whereas CV2 predicts the performance of lines tested in sparse multi-location trials. Predictions for Zn in CV1 ranged from -0.01 to 0.56 for DH1, 0.04 to 0.50 for DH2 and -0.001 to 0.47 for the association panel. For CV2, rMP values ranged from 0.67 to 0.71 for DH1, 0.40 to 0.56 for DH2 and 0.64 to 0.72 for the association panel. The genomic prediction model which included G x E had the highest average rMP for both CV1 (0.39 and 0.44) and CV2 (0.71 and 0.51) for the association panel and DH2 population, respectively. These results suggest that GS has potential to accelerate breeding for enhanced kernel Zn concentration by facilitating selection of superior genotypes.


Assuntos
Interação Gene-Ambiente , Zea mays , Genoma de Planta , Genômica , Genótipo , Humanos , Modelos Genéticos , Fenótipo , Melhoramento Vegetal , Zea mays/genética , Zinco
17.
Front Plant Sci ; 11: 534, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457778

RESUMO

Enriching of kernel zinc (Zn) concentration in maize is one of the most effective ways to solve the problem of Zn deficiency in low and middle income countries where maize is the major staple food, and 17% of the global population is affected with Zn deficiency. Genomic selection (GS) has shown to be an effective approach to accelerate genetic gains in plant breeding. In the present study, an association-mapping panel and two maize double-haploid (DH) populations, both genotyped with genotyping-by-sequencing (GBS) and repeat amplification sequencing (rAmpSeq) markers, were used to estimate the genomic prediction accuracy of kernel Zn concentration in maize. Results showed that the prediction accuracy of two DH populations was higher than that of the association mapping population using the same set of markers. The prediction accuracy estimated with the GBS markers was significantly higher than that estimated with the rAmpSeq markers in the same population. The maximum prediction accuracy with minimum standard error was observed when half of the genotypes were included in the training set and 3,000 and 500 markers were used for prediction in the association mapping panel and the DH populations, respectively. Appropriate levels of minor allele frequency and missing rate should be considered and selected to achieve good prediction accuracy and reduce the computation burden by balancing the number of markers and marker quality. Training set development with broad phenotypic variation is possible to improve prediction accuracy. The transferability of the GS models across populations was assessed, the prediction accuracies in a few pairwise populations were above or close to 0.20, which indicates the prediction accuracies across years and populations have to be assessed in a larger breeding dataset with closer relationship between the training and prediction sets in further studies. GS outperformed MAS (marker-assisted-selection) on predicting the kernel Zn concentration in maize, the decision of a breeding strategy to implement GS individually or to implement MAS and GS stepwise for improving kernel Zn concentration in maize requires further research. Results of this study provide valuable information for understanding how to implement GS for improving kernel Zn concentration in maize.

18.
Front Plant Sci ; 10: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778360

RESUMO

Aflatoxin contamination of maize grain and products causes serious health problems for consumers worldwide, and especially in low- and middle-income countries where monitoring and safety standards are inconsistently implemented. Vitamin A deficiency (VAD) also compromises the health of millions of maize consumers in several regions of the world including large parts of sub-Saharan Africa. We investigated whether provitamin A (proVA) enriched maize can simultaneously contribute to alleviate both of these health concerns. We studied aflatoxin accumulation in grain of 120 maize hybrids formed by crossing 3 Aspergillus flavus resistant and three susceptible lines with 20 orange maize lines with low to high carotenoids concentrations. The hybrids were grown in replicated, artificially-inoculated field trials at five environments. Grain of hybrids with larger concentrations of beta-carotene (BC), beta-cryptoxanthin (BCX) and total proVA had significantly less aflatoxin contamination than hybrids with lower carotenoids concentrations. Aflatoxin contamination had negative genetic correlation with BCX (-0.28, p < 0.01), BC (-0.18, p < 0.05), and proVA (-0.23, p < 0.05). The relative ease of breeding for increased proVA carotenoid concentrations as compared to breeding for aflatoxin resistance in maize suggests using the former as a component of strategies to combat aflatoxin contamination problems for maize. Our findings indicate that proVA enriched maize can be particularly beneficial where the health burdens of exposure to aflatoxin and prevalence of VAD converge with high rates of maize consumption.

19.
Front Genet ; 10: 1392, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32153628

RESUMO

Maize is a major source of food security and economic development in sub-Saharan Africa (SSA), Latin America, and the Caribbean, and is among the top three cereal crops in Asia. Yet, maize is deficient in certain essential amino acids, vitamins, and minerals. Biofortified maize cultivars enriched with essential minerals and vitamins could be particularly impactful in rural areas with limited access to diversified diet, dietary supplements, and fortified foods. Significant progress has been made in developing, testing, and deploying maize cultivars biofortified with quality protein maize (QPM), provitamin A, and kernel zinc. In this review, we outline the status and prospects of developing nutritionally enriched maize by successfully harnessing conventional and molecular marker-assisted breeding, highlighting the need for intensification of efforts to create greater impacts on malnutrition in maize-consuming populations, especially in the low- and middle-income countries. Molecular marker-assisted selection methods are particularly useful for improving nutritional traits since conventional breeding methods are relatively constrained by the cost and throughput of nutritional trait phenotyping.

20.
Am J Clin Nutr ; 108(4): 793-802, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321275

RESUMO

Background: Biofortification of staple crops with ß-carotene is a strategy to reduce vitamin A deficiency, and several varieties are available in some African countries. ß-Cryptoxanthin (BCX)-enhanced maize is currently in field trials. To our knowledge, maize BCX bioavailability has not been assessed in humans. Serum retinol 13C content and xanthophyll concentrations are proposed effectiveness biomarkers for biofortified maize adoption. Objective: We determined the relative difference in BCX and zeaxanthin bioavailability from whole-grain and refined BCX-biofortified maize during chronic feeding compared with white maize and evaluated short-term changes in 13C-abundance in serum retinol. Design: After a 7-d washout, 9 adults (mean ± SD age: 23.4 ± 2.3 y; 5 men) were provided with muffins made from BCX-enhanced whole-grain orange maize (WGOM), refined orange maize (ROM), or refined white maize (RWM) for 12 d in a randomized, blinded, crossover study followed by a 7-d washout. Blood was drawn on days 0, 3, 6, 9, 12, 15, and 19. Carotenoid areas under the curve (AUCs) were compared by using a fixed-effects model. 13C-Abundance in serum retinol was determined by using gas chromatography/combustion/isotope-ratio mass spectrometry on days 0, 12, and 19. Vitamin A status was determined by 13C-retinol isotope dilution postintervention. Results: The serum BCX AUC was significantly higher for WGOM (1.70 ± 0.63 µmol ⋅ L-1 ⋅ d) and ROM (1.66 ± 1.08 µmol ⋅ L-1 ⋅ d) than for RWM (-0.06 ± 0.13 µmol ⋅ L-1 ⋅ d; P < 0.003). A greater increase occurred in serum BCX from WGOM muffins (131%) than from ROM muffins (108%) (P ≤ 0.003). Zeaxanthin AUCs were higher for WGOM (0.94 ± 0.33) and ROM (0.96 ± 0.47) than for RWM (0.05 ± 0.12 µmol ⋅ L-1 ⋅ d; P < 0.003). The intervention did not affect predose serum retinol 13C-abundance. Vitamin A status was within an optimal range (defined as 0.1-0.7 µmol/g liver). Conclusions: BCX and zeaxanthin were highly bioavailable from BCX-biofortified maize. The adoption of BCX maize could positively affect consumers' BCX and zeaxanthin intakes and associated health benefits. This trial is registered at www.clinicaltrials.gov as NCT02800408.


Assuntos
beta-Criptoxantina/farmacocinética , Dieta , Alimentos Fortificados , Deficiência de Vitamina A/prevenção & controle , Grãos Integrais/química , Zea mays/química , Zeaxantinas/farmacocinética , Adulto , África , beta-Criptoxantina/sangue , Disponibilidade Biológica , Biomarcadores/sangue , Pão , Isótopos de Carbono , Estudos Cross-Over , Comportamento Alimentar , Feminino , Humanos , Fígado/metabolismo , Masculino , Estado Nutricional , Provitaminas/sangue , Provitaminas/farmacocinética , Vitamina A/sangue , Deficiência de Vitamina A/sangue , Deficiência de Vitamina A/metabolismo , Adulto Jovem , Zeaxantinas/sangue , beta Caroteno/sangue , beta Caroteno/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA