Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
2.
Clin Infect Dis ; 76(9): 1585-1593, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36519341

RESUMO

BACKGROUND: Artemisinin-resistant Plasmodium falciparum is spreading in Southeast Asia and Africa. In vivo susceptibility to artemisinin is studied by looking at the rate of decline of peripheral parasitemia (parasite clearance half-life). However, parasites that are adhered/sequestered to the endothelium and undetectable in the peripheral blood are not considered in the estimation of parasite clearance. Here, we evaluated the influence of sequestration on in vivo artemisinin efficacy in Uganda, where artemisinin resistance is spreading. METHODS: We analyzed 133 patients with P. falciparum malaria included in an in vivo study on artemisinin efficacy in northern Uganda in 2018 and 2019. The parasite clearance half-life was estimated from peripheral parasitemia after artemisinin monotherapy. P. falciparum histidine-rich protein 2 (PfHRP2) was measured in pretreatment plasma. The number of sequestered parasites was estimated from PfHRP2 concentration and peripheral parasitemia. RESULTS: The estimated number of sequestered parasites per plasma volume ranged from 0 to 2 564 000/µL. Inflammation, thrombocytopenia, and dyslipidemia were significantly associated with sequestration independent of peripheral parasitemia. The median parasite clearance half-lives were 1.65 hours in patients infected with Pfkelch13 wild-type parasites (n = 104) and 3.95 hours in those with A675V artemisinin-resistant mutant (n = 18). In the multivariable model for the wild-type population, 1 000 000/µL of sequestered parasites were estimated to delay parasite clearance by 16.8% (95% confidence interval, 5.1%-28.5%), although it was not clear in the A675V population. CONCLUSIONS: In patients with P. falciparum malaria without artemisinin-resistant mutations, intensive sequestration delays parasite clearance after treatment, which may contribute to reduced artemisinin efficacy.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Parasitos , Animais , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Parasitemia/tratamento farmacológico , Resistência a Medicamentos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Uganda/epidemiologia , Proteínas de Protozoários/genética
3.
Nature ; 552(7683): 101-105, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29186116

RESUMO

Malaria is among the most serious infectious diseases affecting humans, accounting for approximately half a million deaths each year. Plasmodium falciparum causes most life-threatening cases of malaria. Acquired immunity to malaria is inefficient, even after repeated exposure to P. falciparum, but the immune regulatory mechanisms used by P. falciparum remain largely unknown. Here we show that P. falciparum uses immune inhibitory receptors to achieve immune evasion. RIFIN proteins are products of a polymorphic multigene family comprising approximately 150-200 genes per parasite genome that are expressed on the surface of infected erythrocytes. We found that a subset of RIFINs binds to either leucocyte immunoglobulin-like receptor B1 (LILRB1) or leucocyte-associated immunoglobulin-like receptor 1 (LAIR1). LILRB1-binding RIFINs inhibit activation of LILRB1-expressing B cells and natural killer (NK) cells. Furthermore, P. falciparum-infected erythrocytes isolated from patients with severe malaria were more likely to interact with LILRB1 than erythrocytes from patients with non-severe malaria, although an extended study with larger sample sizes is required to confirm this finding. Our results suggest that P. falciparum has acquired multiple RIFINs to evade the host immune system by targeting immune inhibitory receptors.


Assuntos
Evasão da Resposta Imune/imunologia , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/imunologia , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Receptores Imunológicos/imunologia , Sequência de Aminoácidos , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células CHO , Cricetulus , Eritrócitos/imunologia , Eritrócitos/parasitologia , Células HEK293 , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/química , Ligantes , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Receptores Imunológicos/química , Tamanho da Amostra
4.
Malar J ; 16(1): 23, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28068997

RESUMO

BACKGROUND: Individual drug treatment may select resistant parasites in the human body, a process termed in vivo selection. Some single nucleotide polymorphisms in Plasmodium falciparum chloroquine-resistance transporter (pfcrt) and multidrug resistance gene 1 (pfmdr1) genes have been reportedly selected after artemether-lumefantrine treatment. However, there is a paucity of data regarding in vivo selection of P. falciparum Kelch propeller domain (pfkelch13) polymorphisms, responsible for artemisinin-resistance in Asia, and six putative background mutations for artemisinin resistance; D193Y in ferredoxin, T484I in multiple resistance protein 2, V127M in apicoplast ribosomal protein S10, I356T in pfcrt, V1157L in protein phosphatase and C1484F in phosphoinositide-binding protein. METHODS: Artemether-lumefantrine efficacy study with a follow-up period of 28 days was conducted in northern Uganda in 2014. The above-mentioned genotypes were comparatively analysed before drug administration and on days; 3, 7, and 28 days after treatment. RESULTS: In 61 individuals with successful follow-up, artemether-lumefantrine treatment regimen was very effective with PCR adjusted efficacy of 95.2%. Among 146 isolates obtained before treatment, wild-type alleles were observed in 98.6% of isolates in pfkelch13 and in all isolates in the six putative background genes except I356T in pfcrt, which had 2.4% of isolates as mixed infections. In vivo selection study revealed that all isolates detected in the follow-up period harboured wild type alleles in pfkelch13 and the six background genes. CONCLUSION: Mutations in pfkelch13 and the six background genes may not play an important role in the in vivo selection after artemether-lumefantrine treatment in Uganda. Different mechanisms might rather be associated with the existence of parasites after treatment.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Resistência a Medicamentos , Etanolaminas/uso terapêutico , Fluorenos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética , Seleção Genética , Adolescente , Adulto , Combinação Arteméter e Lumefantrina , Criança , Pré-Escolar , Combinação de Medicamentos , Feminino , Humanos , Lactente , Malária Falciparum/parasitologia , Masculino , Mutação , Plasmodium falciparum/isolamento & purificação , Polimorfismo Genético , Uganda , Adulto Jovem
5.
Blood ; 122(5): 629-35, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23645841

RESUMO

Endemic Burkitt lymphoma (eBL) is linked to Plasmodium falciparum (Pf) infection geographically, but evidence from individual-level studies is limited. We investigated this issue among 354 childhood eBL cases and 384 age-, sex-, and location-matched controls enrolled in Ghana from 1965 to 1994. Immunoglobulin G1 (IgG1) and immunoglobulin G3 (IgG3) antibodies to antigens diagnostic of recent infection Pf histidine-rich protein-II (HRP-II) and 6NANP, Pf-vaccine candidates SE36 and 42-kDa region of the 3D7 Pf merozoite surface protein-1 (MSP-1), and tetanus toxoid were measured by indirect enzyme-linked immunoassay. Odds ratios (ORs) and 95% confidence intervals (CIs) for association with eBL were estimated using unconditional logistic regression. After adjustments, eBL was positively associated with HRP-IIIgG3 seropositivity (adjusted OR: 1.60; 95% CI 1.08-2.36) and inversely associated with SE36IgG1 seropositivity (adjusted OR: 0.37; 95% CI 0.21-0.64) and with tetanus toxoidIgG3 levels equal or higher than the mean (adjusted OR: 0.46; 95% CI 0.32-0.66). Anti-MSP-1IgG3 and anti-6NANPIgG3 were indeterminate. eBL risk was potentially 21 times higher (95% CI 5.8-74) in HRP-IIIgG3-seropositive and SE36IgG1-seronegative responders compared with HRP-IIIgG3-seronegative and SE36IgG1-seropositive responders. Our results suggest that recent malaria may be associated with risk of eBL but long-term infection may be protective.


Assuntos
Formação de Anticorpos , Linfoma de Burkitt/epidemiologia , Linfoma de Burkitt/imunologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Adolescente , Animais , Formação de Anticorpos/genética , Especificidade de Anticorpos/imunologia , Antígenos de Protozoários/imunologia , Linfoma de Burkitt/complicações , Estudos de Casos e Controles , Criança , Pré-Escolar , Doenças Endêmicas , Feminino , Variação Genética/imunologia , Variação Genética/fisiologia , Humanos , Lactente , Recém-Nascido , Estágios do Ciclo de Vida/genética , Estágios do Ciclo de Vida/imunologia , Malária Falciparum/imunologia , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento
6.
Parasitol Int ; 99: 102845, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38101534

RESUMO

The call for second generation malaria vaccines needs not only the identification of novel candidate antigens or adjuvants but also a better understanding of immune responses and the underlying protective processes. Plasmodium parasites have evolved a range of strategies to manipulate the host immune system to guarantee survival and establish parasitism. These immune evasion strategies hamper efforts to develop effective malaria vaccines. In the case of a malaria vaccine targeting the N-terminal domain of P. falciparum serine repeat antigen 5 (SE36), now in clinical trials, we observed reduced responsiveness (lowered immunogenicity) which may be attributed to immune tolerance/immune suppression. Here, immunogenicity data and insights into the immune responses to SE36 antigen from epidemiological studies and clinical trials are summarized. Documenting these observations is important to help identify gaps for SE36 continued development and engender hope that highly effective blood-stage/multi-stage vaccines can be achieved.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Animais , Plasmodium falciparum , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Antígenos de Protozoários/genética , Tolerância Imunológica
7.
Vaccines (Basel) ; 12(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400149

RESUMO

Information on the dynamics and decline/persistence of antibody titres is important in vaccine development. A recent vaccine trial in malaria-exposed, healthy African adults and children living in a malaria hyperendemic and seasonal area (Ouagadougou, Burkina Faso) was the first study in which BK-SE36/CpG was administered to different age groups. In 5- to 10-year-old children, the risk of malaria infection was markedly lower in the BK-SE36/CpG arm compared to the control arm. We report here data on antibody titres measured in this age-group after the high malaria transmission season of 2021 (three years after the first vaccine dose was administered). At Year 3, 83% of children had detectable anti-SE36 total IgG antibodies. Geometric mean antibody titres and the proportion of children with detectable anti-SE36 antibodies were markedly higher in the BK-SE36/CpG arm than the control (rabies) arm. The information obtained in this study will guide investigators on future vaccine/booster schedules for this promising blood-stage malaria vaccine candidate.

8.
Front Immunol ; 14: 1119820, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993981

RESUMO

Background: A vaccine targeting the erythrocyte stages of Plasmodium falciparum could play a role in preventing clinical disease. BK-SE36 is a promising malaria vaccine candidate that has shown a good safety profile and immunological responses during field evaluations. It was observed that repeated natural infections could result in immune tolerance against SE36 molecule. Methods: The primary trial was conducted to assess the safety and immunogenicity of the BK-SE36 in two cohorts of children aged 25-60 months (Cohort 1) and 12-24 months (Cohort 2). Immunization was at full dose (1.0 mL) administered at 0, 1, and 6 months. Blood samples were collected before each vaccination for immunological assessments and detection of Plasmodium falciparum infection by microscopy. Blood samples were further collected one month post each vaccination to evaluate immunogenicity. Results: Of seventy-two (72) subjects that have received BK-SE36 vaccination, 71 had available blood smears during vaccination days. One month post Dose 2, the geometric mean of SE36 antibodies was 263.2 (95% CI: 178.9-387.1) in uninfected individuals compared to 77.1 (95% CI: 47.3-125.7) in infected participants. The same trend was observed one-month post booster dose. Participants uninfected at the time of booster vaccination had significantly higher GMTs compared to those who were infected (424.1 (95% CI: 301.9-595.8) vs. 92.8 (95% CI: 34.9-246.6), p = 0.002. There was a 14.3 (95% CI: 9.7-21.1) and 2.4 (95% CI: 1.3-4.4) fold-change, respectively, in uninfected and infected participants between one-month post Dose 2 and booster. The difference was statistically significant (p < 0.001). Conclusion: Concomitant infection by P. falciparum during BK-SE36 vaccine candidate administration is associated with reduced humoral responses. However, it is to be noted that the BK-SE36 primary trial was not designed to investigate the influence of concomitant infection on vaccine-induced immune response and should be interpreted cautiously. Trial registration: WHO ICTRP, PACTR201411000934120.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Criança , Plasmodium falciparum , Antígenos de Protozoários , Malária Falciparum/prevenção & controle , Malária/prevenção & controle , Vacinação/efeitos adversos , Imunoglobulina G , Imunidade
9.
Front Immunol ; 14: 1267372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908361

RESUMO

Background: BK-SE36/CpG is a recombinant blood-stage malaria vaccine candidate based on the N-terminal Plasmodium falciparum serine repeat antigen5 (SE36), adsorbed to aluminium hydroxide gel and reconstituted, prior to administration, with synthetic oligodeoxynucleotides bearing CpG motifs. In healthy Japanese adult males, BK-SE36/CpG was well tolerated. This study assessed its safety and immunogenicity in healthy malaria-exposed African adults and children. Methods: A double-blind, randomised, controlled, age de-escalating clinical trial was conducted in an urban area of Ouagadougou, Burkina Faso. Healthy participants (n=135) aged 21-45 years (Cohort 1), 5-10 years (Cohort 2) and 12-24 months (Cohort 3) were randomised to receive three vaccine doses (Day 0, 28 and 112) of BK-SE36/CpG or rabies vaccine by intramuscular injection. Results: One hundred thirty-four of 135 (99.2%) subjects received all three scheduled vaccine doses. Vaccinations were well tolerated with no related Grade 3 (severe) adverse events (AEs). Pain/limitation of limb movement, headache in adults and fever in younger children (all mild to moderate in intensity) were the most frequently observed local and systemic AEs. Eighty-three of BK-SE36/CpG (91%) recipients and 37 of control subjects (84%) had Grade 1/2 events within 28 days post vaccination. Events considered by the investigator to be vaccine related were experienced by 38% and 14% of subjects in BK-SE36/CpG and control arms, respectively. Throughout the trial, six Grade 3 events (in 4 subjects), not related to vaccination, were recorded in the BK-SE36/CpG arm: 5 events (in 3 subjects) within 28 days of vaccination. All serious adverse events (SAEs) (n=5) were due to severe malaria (52-226 days post vaccination) and not related to vaccination. In all cohorts, BK-SE36/CpG arm had higher antibody titres after Dose 3 than after Dose 2. Younger cohorts had stronger immune responses (12-24-month-old > 5-10 years-old > 21-45 years-old). Sera predominantly reacted to peptides that lie in intrinsically unstructured regions of SE36. In the control arm, there were no marked fold changes in antibody titres and participants' sera reacted poorly to all peptides spanning SE36. Conclusion: BK-SE36/CpG was well-tolerated and immunogenic. These results pave the way for further proof-of-concept studies to demonstrate vaccine efficacy. Clinical trial registration: https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=1921, PACTR201701001921166.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Masculino , Humanos , Adulto , Criança , Lactente , Pré-Escolar , Adulto Jovem , Pessoa de Meia-Idade , Malária Falciparum/prevenção & controle , Malária/prevenção & controle , Método Duplo-Cego , Peptídeos
10.
Int J Cancer ; 130(8): 1908-14, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21630256

RESUMO

The role of protective immunity to Plasmodium falciparum (Pf) malaria in Burkitt lymphoma (BL) is unknown. We investigated the association between BL and antibodies reactive to SE36 antigen, a recombinant protein based on P. falciparum serine repeat antigen 5 gene, targeted by protective malaria immune responses. Cases were children (0-14 years) enrolled at the Korle-Bu Teaching Hospital, Accra, Ghana, during 1965-1994 with BL confirmed by histology or cytology (92% of cases). Controls were apparently healthy children enrolled contemporaneous to the cases from the nearest neighbor house to the case house and were age,- sex-frequency-matched to the cases. Anti-SE36 IgG antibodies were measured using enzyme-linked absorbent immunoassays (ELISAs). SE36 titers were estimated by extrapolating ELISA optical density readings to a standard fitting curve. Anti-SE36 titers were log-transformed for analysis. Odds ratios (ORs) and two-sided 95% confidence intervals (95% CIs) were estimated using unconditional logistic regression. The mean log endpoint dilution titers were 0.63 logs lower in cases than in controls (8.26 [SD 1.68] vs. 8.89 [SD 1.75], Student's t-test, p = 0.019). Lower titers were observed in cases than controls aged 0-4 years (p = 0.05) and in those aged 5-14 years (p = 0.06). Low and medium tertiles of anti-SE36 IgG antibodies were associated with increased OR for BL ([OR 1.67, 95% CI 1.21-2.31] and [OR 1.33, 95% CI 0.96-1.86], respectively, p(trend) = 0.002) in analyses adjusting for age, sex, calendar period and test plate. Our findings suggest that compared to similarly aged children enrolled from the same community, children with BL in Ghana have lower antibodies to SE36 antigen.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Linfoma de Burkitt/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Adolescente , Linfoma de Burkitt/complicações , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Gana , Humanos , Imunoglobulina G/imunologia , Lactente , Recém-Nascido , Modelos Logísticos , Malária Falciparum/complicações , Masculino
11.
Front Cell Infect Microbiol ; 12: 1058081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590593

RESUMO

BK-SE36, based on Plasmodium falciparum serine repeat antigen 5 (SERA5), is a blood-stage malaria vaccine candidate currently being evaluated in clinical trials. Phase 1 trials in Uganda and Burkina Faso have demonstrated promising safety and immunogenicity profiles. However, the genetic diversity of sera5 in Africa and the role of allele/variant-specific immunity remain a major concern. Here, sequence analyses were done on 226 strains collected from the two clinical trial/follow-up studies and 88 strains from two cross-sectional studies in Africa. Compared to other highly polymorphic vaccine candidate antigens, polymorphisms in sera5 were largely confined to the repeat regions of the gene. Results also confirmed a SERA5 consensus sequence with African-specific polymorphisms. Mismatches with the vaccine-type SE36 (BK-SE36) in the octamer repeat, serine repeat, and flanking regions, and single-nucleotide polymorphisms in non-repeat regions could compromise vaccine response and efficacy. However, the haplotype diversity of SERA5 was similar between vaccinated and control participants. There was no marked bias or difference in the patterns of distribution of the SE36 haplotype and no statistically significant genetic differentiation among parasites infecting BK-SE36 vaccinees and controls. Results indicate that BK-SE36 does not elicit an allele-specific immune response.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Formação de Anticorpos , Antígenos de Protozoários/genética , Burkina Faso , Estudos Transversais , Vacinas Antimaláricas/genética , Malária Falciparum/prevenção & controle , Plasmodium falciparum/genética , Uganda , Vacinação , Ensaios Clínicos Fase I como Assunto
12.
Front Immunol ; 13: 978591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119062

RESUMO

Background: A blood-stage vaccine targeting the erythrocytic-stages of the malaria parasite Plasmodium falciparum could play a role to protect against clinical disease. Antibodies against the P. falciparum serine repeat antigen 5 (SE47 and SE36 domains) correlate well with the absence of clinical symptoms in sero-epidemiological studies. A previous phase Ib trial of the recombinant SE36 antigen formulated with aluminum hydroxyl gel (BK-SE36) was promising. This is the first time the vaccine candidate was evaluated in young children below 5 years using two vaccination routes. Methods: Safety and immunogenicity of BK-SE36 was assessed in a double-blind, randomized, controlled, age de-escalating phase Ib trial. Fifty-four Burkinabe children in each age cohort, 25-60 or 12-24 months, were randomized in a 1:1:1 ratio to receive three doses of BK-SE36 either by intramuscular (BK IM) or subcutaneous (BK SC) route on Day 0, Week 4, and 26; or the control vaccine, Synflorix® via IM route on Day 0, Week 26 (and physiological saline on Week 4). Safety data and samples for immunogenicity analyses were collected at various time-points. Results: Of 108 subjects, 104 subjects (96.3%) (Cohort 1: 94.4%; Cohort 2: 98.1%) received all three scheduled vaccine doses. Local reactions, mostly mild or of moderate severity, occurred in 99 subjects (91.7%). The proportion of subjects that received three doses without experiencing Grade 3 adverse events was similar across BK-SE36 vaccines and control arms (Cohort 1: 100%, 89%, and 89%; and Cohort 2: 83%, 82%, and 83% for BK IM, BK SC, and control, respectively). BK-SE36 vaccine was immunogenic, inducing more than 2-fold change in antibody titers from pre-vaccination, with no difference between the two vaccination routes. Titers waned before the third dose but in both cohorts titers were boosted 6 months after the first vaccination. The younger cohort had 2-fold and 4-fold higher geometric mean titers compared to the 25- to 60-month-old cohort after 2 and 3 doses of BK-SE36, respectively. Conclusion: BK-SE36 was well tolerated and immunogenic using either intramuscular or subcutaneous routes, with higher immune response in the younger cohort. Clinical Trial Registration: https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=934, identifier PACTR201411000934120.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Alumínio , Antígenos de Protozoários , Criança , Pré-Escolar , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum
13.
Mol Biol Evol ; 27(5): 1107-16, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20034997

RESUMO

Mitochondrial (mt) genomes from diverse phylogenetic groups vary considerably in size, structure, and organization. The genus Plasmodium, causative agent of malaria, of the phylum Apicomplexa, has the smallest mt genome in the form of a circular and/or tandemly repeated linear element of 6 kb, encoding only three protein genes (cox1, cox3, and cob). The closely related genera Babesia and Theileria also have small mt genomes (6.6 kb) that are monomeric linear with an organization distinct from Plasmodium. To elucidate the structural divergence and evolution of mt genomes between Babesia/Theileria and Plasmodium, we determined five new sequences from Babesia bigemina, B. caballi, B. gibsoni, Theileria orientalis, and T. equi. Together with previously reported sequences of B. bovis, T. annulata, and T. parva, all eight Babesia and Theileria mt genomes are linear molecules with terminal inverted repeats (TIRs) on both ends containing three protein-coding genes (cox1, cox3, and cob) and six large subunit (LSU) ribosomal RNA (rRNA) gene fragments. The organization and transcriptional direction of protein-coding genes and the rRNA gene fragments were completely conserved in the four Babesia species. In contrast, notable variation occurred in the four Theileria species. Although the genome structures of T. annulata and T. parva were nearly identical to those of Babesia, an inversion in the 3-kb central region was found in T. orientalis. Moreover, the T. equi mt genome is the largest (8.2 kb) and most divergent with unusually long TIR sequences, in which cox3 and two LSU rRNA gene fragments are located. The T. equi mt genome showed little synteny to the other species. These results suggest that the Theileria mt genome is highly diverse with lineage-specific evolution in two Theileria species: genome inversion in T. orientalis and gene-embedded long TIR in T. equi.


Assuntos
Babesia/genética , Variação Genética , Genoma Mitocondrial/genética , Genoma de Protozoário/genética , Parasitos/genética , Theileria/genética , Animais , Sequência de Bases , Sequência Conservada , DNA Intergênico/genética , Funções Verossimilhança , Fases de Leitura Aberta/genética , Filogenia , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
14.
Antimicrob Agents Chemother ; 55(1): 94-100, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20956593

RESUMO

Recent reports on the decline of the efficacy of artemisinin-based combination therapies (ACTs) indicate a serious threat to malaria control. The endoplasmic/sarcoplasmic reticulum Ca(2+)-ATPase ortholog of Plasmodium falciparum (PfSERCA) has been suggested to be the target of artemisinin and its derivatives. It is assumed that continuous artemisinin pressure will affect polymorphism of the PfSERCA gene (serca) if the protein is the target. Here, we investigated the polymorphism of serca in parasite populations unexposed to ACTs to obtain baseline information for the study of potential artemisinin-driven selection of resistant parasites. Analysis of 656 full-length sequences from 13 parasite populations in Africa, Asia, Oceania, and South America revealed 64 single nucleotide polymorphisms (SNPs), of which 43 were newly identified and 38 resulted in amino acid substitutions. No isolates showed L263E and S769N substitutions, which were reportedly associated with artemisinin resistance. Among the four continents, the number of SNPs was highest in Africa. In Africa, Asia, and Oceania, common SNPs, or those with a minor allele frequency of ≥0.05, were less prevalent, with most SNPs noted to be continent specific, whereas in South America, common SNPs were highly prevalent and often shared with those in Africa. Of 50 amino acid haplotypes observed, only one haplotype (3D7 sequence) was seen in all four continents (64%). Forty-eight haplotypes had frequencies of less than 5%, and 40 haplotypes were continent specific. The geographical difference in the diversity and distribution of serca SNPs and haplotypes lays the groundwork for assessing whether some artemisinin resistance-associated mutations and haplotypes are selected by ACTs.


Assuntos
Mutação , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Protozoários/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Animais , Anti-Infecciosos/farmacologia , Artemisininas/farmacologia , Frequência do Gene/genética , Haplótipos/genética , Plasmodium falciparum/efeitos dos fármacos
15.
Cancers (Basel) ; 13(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918470

RESUMO

BACKGROUND: Endemic Burkitt lymphoma (eBL) is the most common childhood cancer in Africa and is linked to Plasmodium falciparum (Pf) malaria infection, one of the most common and deadly childhood infections in Africa; however, the role of Pf genetic diversity is unclear. A potential role of Pf genetic diversity in eBL has been suggested by a correlation of age-specific patterns of eBL with the complexity of Pf infection in Ghana, Uganda, and Tanzania, as well as a finding of significantly higher Pf genetic diversity, based on a sensitive molecular barcode assay, in eBL cases than matched controls in Malawi. We examined this hypothesis by measuring diversity in Pf-serine repeat antigen-5 (Pfsera5), an antigenic target of blood-stage immunity to malaria, among 200 eBL cases and 140 controls, all Pf polymerase chain reaction (PCR)-positive, in Malawi. METHODS: We performed Pfsera5 PCR and sequencing (~3.3 kb over exons II-IV) to determine single or mixed PfSERA5 infection status. The patterns of Pfsera5 PCR positivity, mixed infection, sequence variants, and haplotypes among eBL cases, controls, and combined/pooled were analyzed using frequency tables. The association of mixed Pfsera5 infection with eBL was evaluated using logistic regression, controlling for age, sex, and previously measured Pf genetic diversity. RESULTS: Pfsera5 PCR was positive in 108 eBL cases and 70 controls. Mixed PfSERA5 infection was detected in 41.7% of eBL cases versus 24.3% of controls; the odds ratio (OR) was 2.18, and the 95% confidence interval (CI) was 1.12-4.26, which remained significant in adjusted results (adjusted odds ratio [aOR] of 2.40, 95% CI of 1.11-5.17). A total of 29 nucleotide variations and 96 haplotypes were identified, but these were unrelated to eBL. CONCLUSIONS: Our results increase the evidence supporting the hypothesis that infection with mixed Pf infection is increased with eBL and suggest that measuring Pf genetic diversity may provide new insights into the role of Pf infection in eBL.

16.
J Exp Med ; 195(1): 23-34, 2002 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-11781362

RESUMO

Sphingomyelinase (SMase) is one of the principal enzymes in sphingomyelin (SM) metabolism. Here, we identified a Plasmodium falciparum gene (PfNSM) encoding a 46-kD protein, the amino acid sequence of which is approximately 25% identical to that of bacteria SMases. Biochemical analyses of the recombinant protein GST-PfNSM, a fusion protein of the PfNSM product with glutathione-S-transferase, reveal that this enzyme retained similar characteristics in various aspects to SMase detected in P. falciparum-infected erythrocytes and isolated parasites. In addition, the recombinant protein retains hydrolyzing activity not only of SM but also of lysocholinephospholipids (LCPL) including lysophosphatidylcholine and lysoplatelet-activating factor, indicating that PfNSM encodes SM/LCPL-phospholipase C (PLC). Scyphostatin inhibited SM/LCPL-PLC activities of the PfNSM product as well as the intraerythrocytic proliferation of P. falciparum in a dose-dependent manner with ID(50) values for SM/LCPL-PLC activities and the parasite growth at 3-5 microM and approximately 7 microM, respectively. Morphological analysis demonstrated most severe impairment in the intraerythrocytic development with the addition of scyphostatin at trophozoite stage than at ring or schizont stages, suggesting its effect specifically on the stage progression from trophozoite to schizont, coinciding with the active transcription of PfNSM gene.


Assuntos
Amidas/farmacologia , Plasmodium falciparum/enzimologia , Fator de Ativação de Plaquetas/análogos & derivados , Pironas/farmacologia , Esfingomielina Fosfodiesterase/metabolismo , Fosfolipases Tipo C/metabolismo , Sequência de Aminoácidos , Animais , Genes de Protozoários , Lisofosfatidilcolinas/metabolismo , Dados de Sequência Molecular , Plasmodium falciparum/genética , Fator de Ativação de Plaquetas/metabolismo , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/metabolismo , Especificidade por Substrato , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/genética
17.
F1000Res ; 92020.
Artigo em Inglês | MEDLINE | ID: mdl-32399189

RESUMO

Much of the gain in malaria control, in terms of regional achievements in restricting geographical spread and reducing malaria cases and deaths, can be attributed to large-scale deployment of antimalarial drugs, insecticide-treated bed nets, and early diagnostics. However, despite impressive progress, control efforts have stalled because of logistics, unsustainable delivery, or short-term effectiveness of existing interventions or a combination of these reasons. A highly efficacious malaria vaccine as an additional tool would go a long way, but success in the development of this important intervention remains elusive. Moreover, most of the vaccine candidate antigens that were investigated in early-stage clinical trials, selected partly because of their immunogenicity and abundance during natural malaria infection, were polymorphic or structurally complex or both. Likewise, we have a limited understanding of immune mechanisms that confer protection. We reflect on some considerable technological and scientific progress that has been achieved and the lessons learned.


Assuntos
Vacinas Antimaláricas , Malária/prevenção & controle , Antígenos de Protozoários/imunologia , Humanos , Malária/imunologia
18.
Vaccine ; 38(46): 7246-7257, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33012605

RESUMO

BACKGROUND: BK-SE36 is blood-stage malaria vaccine candidate that is undergoing clinical trials. Here, the safety and immunogenicity of BK-SE36 with a novel adjuvant, CpG-ODN(K3) (thus, BK-SE36/CpG) was assessed in a phase 1a trial in Japan. METHODS: An investigator-initiated, randomised, single-blind, placebo-controlled, dose-escalation study was conducted at Osaka University Hospital with 26 healthy malaria naïve Japanese male adults. The trial was conducted in two stages: Stage/Group 1, half-dose (n = 7 for BK-SE36/CpG and n = 3 for control) and Stage/Group 2, full-dose (n = 11 for BK-SE36/CpG and n = 5 for control). There were two intramuscular vaccinations 21 days apart for both half-dose (0.5 ml: 50 µg SE36 + 500 µg aluminum + 500 µg K3) and full-dose (1.0 ml: 100 µg SE36 + 1000 µg aluminum + 1000 µg K3). A one-year follow-up was done to monitor changes in autoimmune markers and vaccine-induced antibody response. RESULTS: BK-SE36/CpG was well tolerated. Vaccination site reactions were similar to those observed with BK-SE36. During the trial and follow-up period, no subject had clinical evidence of autoimmune disease. The full-dose group had significantly higher titres than the half-dose group (Student's t-test, p = 0.002) at 21 days post-second vaccination. Antibody titres remained above baseline values during 12 months of follow-up. The vaccine induced antibody was mostly composed of IgG1 and IgM, and recognised epitopes close to the polyserine region located in the middle of SE36. CONCLUSIONS: BK-SE36/CpG has an acceptable safety profile. Use of CpG-ODN(K3) greatly enhanced immunogenicity in malaria naïve Japanese adults when compared to BK-SE36 alone. The utility of BK-SE36/CpG is currently under evaluation in a malaria endemic setting in West Africa. TRIAL REGISTRATION: JMACCT Clinical Trial Registry JMA-IIA00109.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adulto , África Ocidental , Antígenos de Protozoários , Método Duplo-Cego , Seguimentos , Humanos , Japão , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/prevenção & controle , Masculino , Plasmodium falciparum , Método Simples-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA