RESUMO
Many genes are known to regulate retinal regeneration after widespread tissue damage. Conversely, genes controlling regeneration after limited cell loss, as per degenerative diseases, are undefined. As stem/progenitor cell responses scale to injury levels, understanding how the extent and specificity of cell loss impact regenerative processes is important. Here, transgenic zebrafish enabling selective retinal ganglion cell (RGC) ablation were used to identify genes that regulate RGC regeneration. A single cell multiomics-informed screen of 100 genes identified seven knockouts that inhibited and 11 that promoted RGC regeneration. Surprisingly, 35 out of 36 genes known and/or implicated as being required for regeneration after widespread retinal damage were not required for RGC regeneration. The loss of seven even enhanced regeneration kinetics, including the proneural factors neurog1, olig2 and ascl1a. Mechanistic analyses revealed that ascl1a disruption increased the propensity of progenitor cells to produce RGCs, i.e. increased 'fate bias'. These data demonstrate plasticity in the mechanism through which Müller glia convert to a stem-like state and context specificity in how genes function during regeneration. Increased understanding of how the regeneration of disease-relevant cell types is specifically controlled will support the development of disease-tailored regenerative therapeutics.
Assuntos
Animais Geneticamente Modificados , Células Ganglionares da Retina , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistemas CRISPR-Cas/genética , Regeneração/genética , Regeneração/fisiologia , Retina/metabolismo , Retina/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Fatores de TranscriçãoRESUMO
Recent studies have demonstrated the impact of pro-inflammatory signaling and reactive microglia/macrophages on the formation of Müller glial-derived progenitor cells (MGPCs) in the retina. In chick retina, ablation of microglia/macrophages prevents the formation of MGPCs. Analyses of single-cell RNA-sequencing chick retinal libraries revealed that quiescent and activated microglia/macrophages have a significant impact upon the transcriptomic profile of Müller glia (MG). In damaged monocyte-depleted retinas, MG fail to upregulate genes related to different cell signaling pathways, including those related to Wnt, heparin-binding epidermal growth factor (HBEGF), fibroblast growth factor (FGF) and retinoic acid receptors. Inhibition of GSK3ß, to simulate Wnt signaling, failed to rescue the deficit in MGPC formation, whereas application of HBEGF or FGF2 completely rescued the formation of MGPCs in monocyte-depleted retinas. Inhibition of Smad3 or activation of retinoic acid receptors partially rescued the formation of MGPCs in monocyte-depleted retinas. We conclude that signals produced by reactive microglia/macrophages in damaged retinas stimulate MG to upregulate cell signaling through HBEGF, FGF and retinoic acid, and downregulate signaling through TGFß/Smad3 to promote the reprogramming of MG into proliferating MGPCs.
Assuntos
Fator 2 de Crescimento de Fibroblastos , Microglia , Animais , Microglia/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neuroglia/metabolismo , Células Ependimogliais/metabolismo , Células-Tronco , Galinhas , Retina/metabolismo , Macrófagos , Via de Sinalização Wnt , Receptores do Ácido Retinoico/metabolismo , Família de Proteínas EGF/metabolismo , Heparina/farmacologia , Heparina/metabolismo , Proliferação de Células/genéticaRESUMO
We summarize recent findings in different animal models regarding the different cell-signaling pathways and gene networks that influence the reprogramming of Müller glia into proliferating, neurogenic progenitor cells in the retina. Not surprisingly, most of the cell-signaling pathways that guide the proliferation and differentiation of embryonic retinal progenitors also influence the ability of Müller glia to become proliferating Müller glia-derived progenitor cells (MGPCs). Further, the neuronal differentiation of MGPC progeny is potently inhibited by networks of neurogenesis-suppressing genes in chick and mouse models but occurs freely in zebrafish. There are important differences between the model systems, particularly pro-inflammatory signals that are active in mature Müller glia in damaged rodent and chick retinas, but less so in fish retinas. These pro-inflammatory signals are required to initiate the process of reprogramming, but if sustained suppress the potential of Müller glia to become neurogenic MGPCs. Further, there are important differences in how activated Müller glia up- or downregulate pro-glial transcription factors in the different model systems. We review recent findings regarding regulatory cell signaling and gene networks that influence the activation of Müller glia and the transition of these glia into proliferating progenitor cells with neurogenic potential in fish, chick, and mouse model systems.
RESUMO
Retinal regeneration is robust in some cold-blooded vertebrates, but this process is ineffective in warm-blooded vertebrates. Understanding the mechanisms that suppress the reprogramming of Müller glia into neurogenic progenitors is key to harnessing the regenerative potential of the retina. Inflammation and reactive microglia are known to influence the formation of Müller glia-derived progenitor cells (MGPCs), but the mechanisms underlying this interaction are unknown. We used a chick in vivo model to investigate nuclear factor kappa B (NF-κB) signaling, a critical regulator of inflammation, during the reprogramming of Müller glia into proliferating progenitors. We find that components of the NF-κB pathway are dynamically regulated by Müller glia after neuronal damage or treatment with growth factors. Inhibition of NF-κB enhances, whereas activation suppresses, the formation of proliferating MGPCs. Following microglia ablation, the effects of NF-κB-agonists on MGPC-formation are reversed, suggesting that signals provided by reactive microglia influence how NF-κB impacts Müller glia reprogramming. We propose that NF-κB is an important signaling 'hub' that suppresses the reprogramming of Müller glia into proliferating MGPCs and this 'hub' coordinates signals provided by reactive microglia.
Assuntos
Proliferação de Células/genética , Galinhas/crescimento & desenvolvimento , Células Ependimogliais/metabolismo , NF-kappa B/metabolismo , Retina/metabolismo , Transdução de Sinais/genética , Células-Tronco/metabolismo , Animais , Reprogramação Celular/genética , Galinhas/genética , Inativação Gênica , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Microglia/metabolismo , NF-kappa B/agonistas , NF-kappa B/antagonistas & inibidores , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/genética , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Retina/crescimento & desenvolvimento , Sulfassalazina/farmacologiaRESUMO
Müller glia (MG) in mammalian retinas are incapable of regenerating neurons after damage, whereas the MG in lower vertebrates regenerate functional neurons. Identification of cell signaling pathways and gene regulatory networks that regulate MG-mediated regeneration is key to harnessing the regenerative potential of MG. Here, we study how NFkB-signaling influences glial responses to damage and reprogramming of MG into neurons in the rodent retina. We find activation of NFkB and dynamic expression of NFkB-associated genes in MG after damage, however damage-induced NFkB activation is inhibited by microglia ablation. Knockout of NFkB in MG suppressed the accumulation of immune cells after damage. Inhibition of NFkB following NMDA-damage significantly enhanced the reprogramming of Ascl1-overexpressing MG into neuron-like cells. scRNA-seq of retinal glia following inhibition of NFkB reveals coordination with signaling via TGFß2 and suppression of NFI and Id transcription factors. Inhibition of Smad3 signal transducer or Id transcription factors increased numbers of neuron-like cells produced by Ascl1-overexpressing MG. We conclude that NFkB is a key signaling hub that is activated in MG after damage, mediates the accumulation of immune cells, and suppresses the neurogenic potential of MG.
Assuntos
Células Ependimogliais , Neuroglia , Animais , Proliferação de Células/fisiologia , Células Ependimogliais/metabolismo , Mamíferos/metabolismo , NF-kappa B/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Regeneração , Retina , Transdução de Sinais , Fatores de Transcrição/metabolismoRESUMO
Recent studies suggest midkine (MDK) is involved in the development and regeneration of the zebrafish retina. We investigate the expression patterns of MDK and related factors, roles in neuronal survival, and influence upon the formation of Müller glia-derived progenitor cells (MGPCs) in chick and mouse model systems. By using single-cell RNA-sequencing, we find that MDK and pleiotrophin (PTN), a MDK-related cytokine, are upregulated by Müller glia (MG) during later stages of development in chick. While PTN is downregulated, MDK is dramatically upregulated in mature MG after retinal damage or FGF2 and insulin treatment. By comparison, MDK and PTN are downregulated by MG in damaged mouse retinas. In both chick and mouse retinas, exogenous MDK induces expression of cFos and pS6 in MG. In the chick, MDK significantly decreases numbers dying neurons, reactive microglia, and proliferating MGPCs, whereas PTN has no effect. Inhibition of MDK-signaling with Na3 VO4 blocks neuroprotective effects with an increase in the number of dying cells and negates the pro-proliferative effects on MGPCs in damaged retinas. Inhibitors of PP2A and Pak1, which are associated with MDK-signaling through integrin ß1, suppressed the formation of MGPCs in damaged chick retinas. In mice, MDK promotes a small but significant increase in proliferating MGPCs in damaged retinas and potently decreases the number of dying cells. We conclude that MDK expression is dynamically regulated in Müller glia during embryonic maturation, following retinal injury, and during reprogramming into MGPCs. MDK mediates glial activity, neuronal survival, and the re-programming of Müller glia into proliferating MGPCs.
Assuntos
Neuroglia , Células-Tronco , Peixe-Zebra , Animais , Proliferação de Células , Galinhas , Células Ependimogliais , Camundongos , Midkina , RetinaRESUMO
We investigate the roles of mTor signaling in the formation of Müller glia-derived progenitor cells (MGPCs) in the chick retina. During embryonic development, pS6 (a readout of active mTor signaling) is present in early-stage retinal progenitors, differentiating amacrine and ganglion cells, and late-stage progenitors or maturing Müller glia. By contrast, pS6 is present at low levels in a few scattered cell types in mature, healthy retina. Following retinal damage, in which MGPCs are known to form, mTor signaling is rapidly activated in Müller glia. Inhibition of mTor in damaged retinas prevented the accumulation of pS6 in Müller glia and reduced numbers of proliferating MGPCs. Inhibition of mTor had no effect on MAPK signaling or on upregulation of the stem cell factor Klf4, whereas Pax6 upregulation was significantly reduced. Inhibition of mTor potently blocked the MGPC-promoting effects of Hedgehog, Wnt and glucocorticoid signaling in damaged retinas. In the absence of retinal damage, insulin, IGF1 and FGF2 induced pS6 in Müller glia, and this was blocked by mTor inhibitor. In FGF2-treated retinas, in which MGPCs are known to form, inhibition of mTor blocked the accumulation of pS6, the upregulation of Pax6 and the formation of proliferating MGPCs. We conclude that mTor signaling is required, but not sufficient, to stimulate Müller glia to give rise to proliferating progenitors, and the network of signaling pathways that drive the formation of MGPCs requires activation of mTor.
Assuntos
Células Ependimogliais/citologia , Neuroglia/citologia , Retina/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Galinhas , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like II/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , N-Metilaspartato/farmacologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Fator de Transcrição PAX6/metabolismo , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Retina/patologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismoRESUMO
BACKGROUND: Microglia and inflammation have context-specific impacts upon neuronal survival in different models of central nervous system (CNS) disease. Herein, we investigate how inflammatory mediators, including microglia, interleukin 1 beta (IL1ß), and signaling through interleukin 1 receptor type 1 (IL-1R1), influence the survival of retinal neurons in response to excitotoxic damage. METHODS: Excitotoxic retinal damage was induced via intraocular injections of NMDA. Microglial phenotype and neuronal survival were assessed by immunohistochemistry. Single-cell RNA sequencing was performed to obtain transcriptomic profiles. Microglia were ablated by using clodronate liposome or PLX5622. Retinas were treated with IL1ß prior to NMDA damage and cell death was assessed in wild type, IL-1R1 null mice, and mice expressing IL-1R1 only in astrocytes. RESULTS: NMDA-induced damage included neuronal cell death, microglial reactivity, upregulation of pro-inflammatory cytokines, and genes associated with IL1ß-signaling in different types of retinal neurons and glia. Expression of the IL1ß receptor, IL-1R1, was evident in astrocytes, endothelial cells, some Müller glia, and OFF bipolar cells. Ablation of microglia with clodronate liposomes or Csf1r antagonist (PLX5622) resulted in elevated cell death and diminished neuronal survival in excitotoxin-damaged retinas. Exogenous IL1ß stimulated the proliferation and reactivity of microglia in the absence of damage, reduced numbers of dying cells in damaged retinas, and increased neuronal survival following an insult. IL1ß failed to provide neuroprotection in the IL-1R1-null retina, but IL1ß-mediated neuroprotection was rescued when expression of IL-1R1 was restored in astrocytes. CONCLUSIONS: We conclude that reactive microglia provide protection to retinal neurons, since the absence of microglia is detrimental to survival. We propose that, at least in part, the survival-influencing effects of microglia may be mediated by IL1ß, IL-1R1, and interactions of microglia and other macroglia.
Assuntos
Interleucina-1beta/metabolismo , Microglia/metabolismo , Neuroproteção/fisiologia , Receptores Tipo I de Interleucina-1/metabolismo , Retina/patologia , Animais , Agonistas de Aminoácidos Excitatórios/toxicidade , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/imunologia , N-Metilaspartato/toxicidade , Neurotoxinas/toxicidade , Receptores Tipo I de Interleucina-1/imunologia , Retina/imunologiaRESUMO
Müller glia-derived progenitor cells (MGPCs) have the capability to regenerate neurons in the retinas of different vertebrate orders. The formation of MGPCs is regulated by a network of cell-signaling pathways. The purpose of this study was to investigate how BMP/Smad1/5/8- and TGFß/Smad2/3-signaling are coordinated to influence the formation of MGPCs in the chick model system. We find that pSmad1/5/8 is selectively up-regulated in the nuclei of Müller glia following treatment with BMP4, FGF2, or NMDA-induced damage, and this up-regulation is blocked by a dorsomorphin analogue DMH1. By comparison, Smad2/3 is found in the nuclei of Müller glia in untreated retinas, and becomes localized to the cytoplasm following NMDA- or FGF2-treatment. These findings suggest a decrease in TGFß- and increase in BMP-signaling when MGPCs are known to form. In both NMDA-damaged and FGF2-treated retinas, inhibition of BMP-signaling suppressed the proliferation of MGPCs, whereas inhibition of TGFß-signaling stimulated the proliferation of MGPCs. Consistent with these findings, TGFß2 suppressed the formation of MGPCs in NMDA-damaged retinas. Our findings indicate that BMP/TGFß/Smad-signaling is recruited into the network of signaling pathways that controls the formation of proliferating MGPCs. We conclude that signaling through BMP4/Smad1/5/8 promotes the formation of MGPCs, whereas signaling through TGFß/Smad2/3 suppresses the formation of MGPCs.
Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Células Ependimogliais/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Retina/citologia , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Galinhas , Inibidores Enzimáticos/farmacologia , Células Ependimogliais/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Marcação In Situ das Extremidades Cortadas , N-Metilaspartato/toxicidade , RNA Mensageiro/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Retina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/genética , Proteínas Smad/metabolismo , Células-Tronco/efeitos dos fármacos , Ureia/análogos & derivados , Ureia/metabolismoRESUMO
Retinal Müller glia in cold-blooded vertebrates can reprogram into neurogenic progenitors to replace neurons lost to injury, but mammals lack this ability. While recent studies have shown that transgenic overexpression of neurogenic bHLH factors and glial-specific disruption of NFI family transcription factors and Notch signaling induce neurogenic competence in mammalian Müller glia, induction of neurogenesis in wildtype glia has thus far proven elusive. Here we report that viral-mediated overexpression of the pluripotency factor Oct4 ( Pou5f1 ) induces transdifferentiation of wildtype mouse Müller glia into bipolar neurons and stimulates this process synergistically in parallel with Notch loss of function. Single cell multiomic analysis shows that Oct4 overexpression leads to widespread changes in gene expression and chromatin accessibility, inducing activity of both the neurogenic transcription factor Rfx4 and the Yamanaka factors Sox2 and Klf4. This study demonstrates that viral-mediated overexpression of Oct4 induces neurogenic competence in wildtype retinal Müller glia, identifying mechanisms that could be used in cell-based therapies for treating retinal dystrophies.
RESUMO
Generation of neurons through direct reprogramming has emerged as a promising therapeutic approach for treating neurodegenerative diseases. In this study, we present an efficient method for reprogramming retinal glial cells into neurons. By suppressing Notch signaling by disrupting either Rbpj or Notch1/2, we induced mature Müller glial cells to reprogram into bipolar- and amacrine-like neurons. We demonstrate that Rbpj directly activates both Notch effector genes and genes specific to mature Müller glia while indirectly repressing expression of neurogenic basic helix-loop-helix (bHLH) factors. Combined loss of function of Rbpj and Nfia/b/x resulted in conversion of nearly all Müller glia to neurons. Last, inducing Müller glial proliferation by overexpression of dominant-active Yap promotes neurogenesis in both Rbpj- and Nfia/b/x/Rbpj-deficient Müller glia. These findings demonstrate that Notch signaling and NFI factors act in parallel to inhibit neurogenic competence in mammalian Müller glia and help clarify potential strategies for regenerative therapies aimed at treating retinal dystrophies.
Assuntos
Reprogramação Celular , Células Ependimogliais , Fatores de Transcrição NFI , Neuroglia , Neurônios , Receptores Notch , Retina , Transdução de Sinais , Animais , Fatores de Transcrição NFI/metabolismo , Fatores de Transcrição NFI/genética , Camundongos , Retina/metabolismo , Retina/citologia , Células Ependimogliais/metabolismo , Células Ependimogliais/citologia , Neuroglia/metabolismo , Receptores Notch/metabolismo , Neurônios/metabolismo , Neurônios/citologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Neurogênese , Proteínas de Sinalização YAP/metabolismo , Proliferação de CélulasRESUMO
Müller glia are a cellular source for neuronal regeneration in vertebrate retinas. However, the capacity for retinal regeneration varies widely across species. Understanding the mechanisms that regulate the reprogramming of Müller glia into progenitor cells is key to reversing the loss of vision that occurs with retinal diseases. In the mammalian retina, NFkB signaling promotes glial reactivity and represses the reprogramming of Müller glia into progenitor cells. Here we investigate different cytokines, growth factors, cell signaling pathways, and damage paradigms that influence NFkB-signaling in the mouse retina. We find that exogenous TNF and IL1ß potently activate NFkB-signaling in Müller glia in undamaged retinas, and this activation is independent of microglia. By comparison, TLR1/2 agonist indirectly activates NFkB-signaling in Müller glia, and this activation depends on the presence of microglia as Tlr2 is predominantly expressed by microglia, but not other types of retinal cells. Exogenous FGF2 did not activate NFkB-signaling, whereas CNTF, Osteopontin, WNT4, or inhibition of GSK3ß activated NFkB in Müller glia in the absence of neuronal damage. By comparison, dexamethasone, a glucocorticoid agonist, suppressed NFkB-signaling in Müller glia in damaged retinas, in addition to reducing numbers of dying cells and the accumulation of reactive microglia. Although NMDA-induced retinal damage activated NFkB in Müller glia, optic nerve crush had no effect on NFkB activation within the retina, whereas glial cells within the optic nerve were responsive. We conclude that the NFkB pathway is activated in retinal Müller glia in response to many different cell signaling pathways, and activation often depends on signals produced by reactive microglia.
Assuntos
Células Ependimogliais , Microglia , Animais , Camundongos , Microglia/metabolismo , Citocinas/metabolismo , NF-kappa B/metabolismo , Neuroglia/metabolismo , Retina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proliferação de Células , MamíferosRESUMO
Generation of neurons through direct reprogramming has emerged as a promising therapeutic approach for neurodegenerative diseases. Despite successful applications in vitro , in vivo implementation has been hampered by low efficiency. In this study, we present a highly efficient strategy for reprogramming retinal glial cells into neurons by simultaneously inhibiting key negative regulators. By suppressing Notch signaling through the removal of its central mediator Rbpj, we induced mature Müller glial cells to reprogram into bipolar and amacrine neurons in uninjured adult mouse retinas, and observed that this effect was further enhanced by retinal injury. We found that specific loss of function of Notch1 and Notch2 receptors in Müller glia mimicked the effect of Rbpj deletion on Müller glia-derived neurogenesis. Integrated analysis of multiome (scRNA- and scATAC-seq) and CUT&Tag data revealed that Rbpj directly activates Notch effector genes and genes specific to mature Müller glia while also indirectly represses the expression of neurogenic bHLH factors. Furthermore, we found that combined loss of function of Rbpj and Nfia/b/x resulted in a robust conversion of nearly all Müller glia to neurons. Finally, we demonstrated that inducing Müller glial proliferation by AAV (adeno-associated virus)-mediated overexpression of dominant- active Yap supports efficient levels of Müller glia-derived neurogenesis in both Rbpj - and Nfia/b/x/Rbpj - deficient Müller glia. These findings demonstrate that, much like in zebrafish, Notch signaling actively represses neurogenic competence in mammalian Müller glia, and suggest that inhibition of Notch signaling and Nfia/b/x in combination with overexpression of activated Yap could serve as an effective component of regenerative therapies for degenerative retinal diseases.
RESUMO
Recent studies have demonstrated the complex coordination of pro-inflammatory signaling and reactive microglia/macrophage on the formation Müller glial-derived progenitor cells (MGPCs) in the retinas of fish, birds and mice. We generated scRNA-seq libraries to identify transcriptional changes in Müller glia (MG) that result from the depletion of microglia from the chick retina. We found significant changes in different networks of genes in MG in normal and damaged retinas when the microglia are ablated. We identified a failure of MG to upregulate Wnt-ligands, Heparin binding epidermal growth factor (HBEGF), Fibroblast growth factor (FGF), retinoic acid receptors and genes related to Notch-signaling. Inhibition of GSK3ß, to simulate Wnt-signaling, failed to rescue the deficit in formation of proliferating MGPCs in damaged retinas missing microglia. By comparison, application of HBEGF or FGF2 completely rescued the formation of proliferating MGPCs in microglia-depleted retinas. Similarly, injection of a small molecule inhibitor to Smad3 or agonist to retinoic acid receptors partially rescued the formation of proliferating MGPCs in microglia-depleted damaged retinas. According to scRNA-seq libraries, patterns of expression of ligands, receptors, signal transducers and/or processing enzymes to cell-signaling via HBEGF, FGF, retinoic acid and TGFß are rapidly and transiently upregulated by MG after neuronal damage, consistent with important roles for these cell-signaling pathways in regulating the formation of MGPCs. We conclude that quiescent and activated microglia have a significant impact upon the transcriptomic profile of MG. We conclude that signals produced by reactive microglia in damaged retinas stimulate MG to upregulate cell signaling through HBEGF, FGF and retinoic acid, and downregulate signaling through TGFß/Smad3 to promote the reprogramming on MG into proliferating MGPCs.
RESUMO
Following acute retinal damage, zebrafish possess the ability to regenerate all neuronal subtypes. This regeneration requires Müller glia (MG) to reprogram and divide asymmetrically to produce a multipotent Müller glia-derived neuronal progenitor cell (MGPC). This raises three key questions. First, does loss of different retinal cell subtypes induce unique MG regeneration responses? Second, do MG reprogram to a developmental retinal progenitor cell state? And finally, to what extent does regeneration recapitulate retinal development? We examined these questions by performing single-nuclear and single-cell RNA-Seq and ATAC-Seq in both developing and regenerating retinas. While MG reprogram to a state similar to late-stage retinal progenitors in developing retinas, there are transcriptional differences between reprogrammed MG/MGPCs and late progenitors, as well as reprogrammed MG in outer and inner retinal damage models. Validation of candidate genes confirmed that loss of different subtypes induces differences in transcription factor gene expression and regeneration outcomes. This work identifies major differences between gene regulatory networks activated following the selective loss of different subtypes of retina neurons, as well as between retinal regeneration and development.
RESUMO
Following acute retinal damage, zebrafish possess the ability to regenerate all neuronal subtypes. This regeneration requires Müller glia (MG) to reprogram and divide asymmetrically to produce a multipotent Müller glia-derived neuronal progenitor cell (MGPC). This raises three key questions. First, does loss of different retinal cell subtypes induce unique MG regeneration responses? Second, do MG reprogram to a developmental retinal progenitor cell state? And finally, to what extent does regeneration recapitulate retinal development? We examined these questions by performing single-nuclear and single-cell RNA-Seq and ATAC-Seq in both developing and regenerating retinas. While MG reprogram to a state similar to late-stage retinal progenitors in developing retinas, there are transcriptional differences between reprogrammed MG/MGPCs and late progenitors, as well as reprogrammed MG in outer and inner retinal damage models. Validation of candidate genes confirmed that loss of different subtypes induces differences in transcription factor gene expression and regeneration outcomes. This work identifies major differences between gene regulatory networks activated following the selective loss of different subtypes of retina neurons, as well as between retinal regeneration and development.
RESUMO
Following acute retinal damage, zebrafish possess the ability to regenerate all neuronal subtypes through Müller glia (MG) reprogramming and asymmetric cell division that produces a multipotent Müller glia-derived neuronal progenitor cell (MGPC). This raises three key questions. First, do MG reprogram to a developmental retinal progenitor cell (RPC) state? Second, to what extent does regeneration recapitulate retinal development? And finally, does loss of different retinal cell subtypes induce unique MG regeneration responses? We examined these questions by performing single-nuclear and single-cell RNA-Seq and ATAC-Seq in both developing and regenerating retinas. Here we show that injury induces MG to reprogram to a state similar to late-stage RPCs. However, there are major transcriptional differences between MGPCs and RPCs, as well as major transcriptional differences between activated MG and MGPCs when different retinal cell subtypes are damaged. Validation of candidate genes confirmed that loss of different subtypes induces differences in transcription factor gene expression and regeneration outcomes.
Assuntos
Redes Reguladoras de Genes , Peixe-Zebra , Animais , Peixe-Zebra/genética , Retina/metabolismo , Neurogênese/genética , Neuroglia/metabolismo , Proliferação de Células/fisiologia , Células Ependimogliais/metabolismoRESUMO
Many genes are known to regulate retinal regeneration following widespread tissue damage. Conversely, genes controlling regeneration following limited retinal cell loss, akin to disease conditions, are undefined. Combining a novel retinal ganglion cell (RGC) ablation-based glaucoma model, single cell omics, and rapid CRISPR/Cas9-based knockout methods to screen 100 genes, we identified 18 effectors of RGC regeneration kinetics. Surprisingly, 32 of 33 previously known/implicated regulators of retinal tissue regeneration were not required for RGC replacement; 7 knockouts accelerated regeneration, including sox2, olig2, and ascl1a . Mechanistic analyses revealed loss of ascl1a increased "fate bias", the propensity of progenitors to produce RGCs. These data demonstrate plasticity and context-specificity in how genes function to control regeneration, insights that could help to advance disease-tailored therapeutics for replacing lost retinal cells. One sentence summary: We discovered eighteen genes that regulate the regeneration of retinal ganglion cells in zebrafish.
RESUMO
Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin accessibility in Müller glia from zebrafish, chick, and mice in response to different stimuli. We identified evolutionarily conserved and species-specific gene networks controlling glial quiescence, reactivity, and neurogenesis. In zebrafish and chick, the transition from quiescence to reactivity is essential for retinal regeneration, whereas in mice, a dedicated network suppresses neurogenic competence and restores quiescence. Disruption of nuclear factor I transcription factors, which maintain and restore quiescence, induces Müller glia to proliferate and generate neurons in adult mice after injury. These findings may aid in designing therapies to restore retinal neurons lost to degenerative diseases.