Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202401650, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785097

RESUMO

The ability of triaryltelluronium salts to interact with N-halosuccinimides (NXS) through chalcogen bonding (ChB) in the solid state and in solution is demonstrated herein. Cocrystals of the triaryltelluronium bearing two CF3 electron-withdrawing groups per aryl ring with N-chloro-, N-bromo- and N-iodosuccinimide (respectively NCS, NBS and NIS) were analyzed by X-ray diffraction, evidencing a ChB between tellurium and the carbonyl group of NXS. This ChB was confirmed in solution by NMR spectroscopy, especially by 125Te NMR titration experiment, which allowed the determination of the association constant (Ka) between the telluronium and NBS. The so-obtained Ka value of 17.3 ± 0.6 M-1 indicated a moderate interaction in solution because of the competitive role of the solvent. The strength of the Te---O ChB was however sufficient enough to promote the catalytic halofunctionalization of aromatics and of alkenes such as the intra- and intermolecular haloalkoxylation and haloesterification of alkenes.

2.
Chemistry ; 30(7): e202302933, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37970753

RESUMO

Telluronium salts [Ar2 MeTe]X were synthesized, and their Lewis acidic properties towards a number of Lewis bases were addressed in solution by physical and theoretical means. Structural X-ray diffraction analysis of 21 different salts revealed the electrophilicity of the Te centers in their interactions with anions. Telluroniums' propensity to form Lewis pairs was investigated with OPPh3 . Diffusion-ordered NMR spectroscopy suggested that telluroniums can bind up to three OPPh3 molecules. Isotherm titration calorimetry showed that the related heats of association in 1,2-dichloroethane depend on the electronic properties of the substituents of the aryl moiety and on the nature of the counterion. The enthalpies of first association of OPPh3 span -0.5 to -5 kcal mol-1 . Study of the affinity of telluroniums for OPPh3 by state-of-the-art DFT and ab-initio methods revealed the dominant Coulombic and dispersion interactions as well as an entropic effect favoring association in solution. Intermolecular orbital interactions between [Ar2 MeTe]+ cations and OPPh3 are deemed insufficient on their own to ensure the cohesion of [Ar2 MeTe ⋅ Bn ]+ complexes in solution (B=Lewis base). Comparison of Grimme's and Tkatchenko's DFT-D4/MBD-vdW thermodynamics of formation of higher [Ar2 MeTe ⋅ Bn ]+ complexes revealed significant molecular size-dependent divergence of the two methodologies, with MBD yielding better agreement with experiment.

3.
Molecules ; 29(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474492

RESUMO

The relatively small Frankeniaceae family is represented by halophyte plants, growing in arid and semi-arid climates in saline, alkaline or calcareous soils. Due to their living conditions, they usually produce a large diversity of compounds, which often exhibit bioactivities. Some species of this genus have long been used as traditional herbal medicines to treat dysentery, diarrhea, gonorrhea, vaginal leucorrhea, respiratory diseases and wounds. To date, several studies on either phytochemical or pharmacological aspects, or both, have revealed that this genus is a rich source of diverse and novel bioactive chemicals, including phenolics, flavonoids, alkaloids and fatty acids. This review describes all the reported chemical profiles of Frankenia species, as well as the corresponding biological properties, when available. The aim of this review is to show the potential of these plants for various applications, especially therapeutic ones.


Assuntos
Plantas Medicinais , Etnofarmacologia , Medicina Tradicional , Fitoterapia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
4.
Chemistry ; 29(69): e202302755, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37743816

RESUMO

Chalcogen bonding (ChB) is the non-covalent interaction occurring between chalcogen atoms as Lewis acid sites and atoms or groups of atoms able to behave as Lewis bases through their lone pair or π electrons. Analogously to its sister halogen bonding, the high directionality of this interaction was implemented for precise structural organizations in the solid state and in solution. Regarding catalysis, ChB is now accepted as a new mode of activation as demonstrated by the increased number of examples in the last five years. In the family of ChB catalysts, those based on tellurium rapidly appeared to overcome their lighter sulfur and selenium counterparts. In this review, we highlight the Lewis acid properties of tellurium-based derivatives in solution and summarize the start-of-the-art of their applications in catalysis.

5.
Chemistry ; 29(15): e202203372, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36524743

RESUMO

In the chalcogen series, tellurium species exhibit the strongest chalcogen bonding (ChB) interaction with electron-rich atom. This property explains the renewed interested toward tellurium-based derivatives and their use in different applications, such as organocatalysis. In this context, the catalytic activity of telluronium salts in the Povarov reaction is presented herein. Different dienophiles, as well as imines of variable electronic nature, efficiently react in the presence of catalytic amount of either diarylmethyltelluronium or triaryltelluronium salts. Both catalysts could also readily perform the three-component Povarov reaction starting from aldehyde, aniline and dihydrofuran. The reactivity of telluroniums towards imines and aldehydes was confirmed in the solid state by the ability of Te atom to interact through ChB with the oxygen carbonyl of acetone, and in solution with significant shift variations of the imine proton and of the tellurium atom in 1 H and 125 Te NMR spectroscopy. For the most active telluronium catalysts bearing CF3 groups, association constants (K) with N-phenyl phenylmethanimine in the range 22-38 M-1 were measured in dichloromethane.

6.
Chemphyschem ; 24(4): e202200481, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36205925

RESUMO

Chalcogen bonds (ChBs) occur between molecules containing Lewis acidic chalcogen substituents and Lewis bases. Recently, ChB emerged as a pivotal interaction in solution-based applications such as anion recognition, anion transport and catalysis. However, before moving to applications, the involvement of ChB must be established in solution. In this Concept article, we provide a brief review of the currently available experimental investigations of ChB in solution.

7.
Nat Prod Rep ; 39(8): 1574-1590, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35699109

RESUMO

Covering: 1972 to 2021The rhazinilam family of natural products exhibits a main structure with a stereogenic quaternary carbon and a tetrahydroindolizine core imbedded within a 9-membered macrocycle, imposing axial chirality. This unique architecture combined with their taxol-like antimitotic activities have attracted various attention, especially from synthetic chemists, notably in the past decade. The present review describes the known total and formal syntheses of the members of the rhazinilam family (rhazinilam, rhazinal, leuconolam and kopsiyunnanines), according to the strategy developed.


Assuntos
Alcaloides , Produtos Biológicos , Alcaloides/química , Azepinas , Produtos Biológicos/farmacologia , Indolizinas , Lactamas , Estereoisomerismo
8.
Chemistry ; 28(25): e202200395, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35302685

RESUMO

The chalcogen bonding (ChB) ability of Te is studied in symmetrical diaryl ditellurides ArTeTeAr. Among the two Te σ-holes, the one along the less polarized Te-Te bond was calculated as the more electropositive. This counter-intuitive situation is due to the hyperconjugation contribution from Te lone pair to the σ* of the adjacent Te which coincides with σ-hole along the more polarized Te-Ar bond. ArTeTeAr showed notable structural features in the solid state as a result of intermolecular Te⋅⋅⋅Te ChB, such as a Te4 rectangle through dimer aggregation or a triangular Te3 motif, where one Te interacts with both Te atoms of a neighboring molecule through both its σ-hole and lone pair, in a slightly frustrated geometry. Lewis acidity of ArTeTeAr was also evaluated by NMR with R3 PO as σ-hole acceptors in different solvents. Thus, 125 Te NMR allowed monitoring Te⋅⋅⋅O interaction and delivering association constants (Ka ) for 1 : 1 adducts. The highest value of Ka =90 M-1 was measured for the adduct between ArTeTeAr bearing CF3 groups and Et3 PO in cyclohexane. Notably, by using nBu3 PO, Te⋅⋅⋅O interaction was revealed by 19 F-1 H HOESY showing spatial proximity between CF3 and CH3 of nBu3 PO.


Assuntos
Calcogênios , Calcogênios/química , Espectroscopia de Ressonância Magnética , Solventes
9.
Chirality ; 34(4): 609-619, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35072961

RESUMO

Planar chiral ferrocenes are well-known compounds that have attracted interest for application in synthesis, catalysis, material science, and medicinal chemistry for several decades. In spite of the fact that asymmetric synthesis procedures for obtaining enantiomerically enriched ferrocenes are available, sometimes, the accessible enantiomeric excess of the chiral products is unsatisfactory. In such cases and for resolution of racemic planar chiral ferrocenes, enantioselective high-performance liquid chromatography (HPLC) on polysaccharide-based chiral stationary phases (CSPs) has been used in quite a few literature articles. However, although moderate/high enantioselectivities have been obtained for planar chiral ferrocenes bearing polar substituents, the enantioseparation of derivatives containing halogens, or exclusively alkyl groups, remains rather challenging. In this study, the enantioseparation of ten planar chiral 1,2- and 1,3-disubstituted ferrocenes was explored by using five polysaccharide-based CSPs under multimodal elution conditions. Baseline enantioseparations were achieved for nine analytes with separation factors (α) ranging from 1.20 to 2.92. The presence of π-extended systems in the analyte structure was shown to impact affinity of the most retained enantiomer toward amylose-based selectors, observing retention times higher than 80 min with methanol-containing mobile phases (MPs). Electrostatic potential (V) analysis and molecular dynamics (MD) simulations were used in order to study interaction modes at the molecular level.


Assuntos
Amilose , Polissacarídeos , Amilose/química , Cromatografia Líquida de Alta Pressão/métodos , Metalocenos , Polissacarídeos/química , Estereoisomerismo
10.
Electrophoresis ; 42(17-18): 1853-1863, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33742705

RESUMO

2'-(4-Pyridyl)- and 2'-(4-hydroxyphenyl)-TCIBPs (TCIBP = 3,3',5,5'-tetrachloro-2-iodo-4,4'-bipyridyl) are chiral compounds that showed interesting inhibition activity against transthyretin fibrillation in vitro. We became interested in their enantioseparation since we noticed that the M-stereoisomer is more effective than the P-enantiomer. Based thereon, we recently reported the enantioseparation of 2'-substituted TCIBP derivatives with amylose-based chiral columns. Following this study, herein we describe the comparative enantioseparation of both 2'-(4-pyridyl)- and 2'-(4-hydroxyphenyl)-TCIBPs on four cellulose phenylcarbamate-based chiral columns aiming to explore the effect of the polymer backbone, as well as the nature and position of substituents on the side groups on the enantioseparability of these compounds. In the frame of this project, the impact of subtle variations of analyte and polysaccharide structures, and mobile phase (MP) polarity on retention and selectivity was evaluated. The effect of temperature on retention and selectivity was also considered, and overall thermodynamic parameters associated with the analyte adsorption onto the CSP surface were derived from van 't Hoff plots. Interesting cases of enantiomer elution order (EEO) reversal were observed. In particular, the EEO was shown to be dependent on polysaccharide backbone, the elution sequence of the two analytes being P-M and M-P on cellulose and amylose tris(3,5-dimethylphenylcarbamate), respectively. In this regard, a theoretical investigation based on molecular dynamics (MD) simulations was performed by using amylose and cellulose tris(3,5-dimethylphenylcarbamate) nonamers as virtual models of the polysaccharide-based selectors. This exploration at the molecular level shed light on the origin of the enantiodiscrimination processes.


Assuntos
Simulação de Dinâmica Molecular , Amilose , Celulose , Cromatografia Líquida de Alta Pressão , Compostos Heterocíclicos , Polissacarídeos , Estereoisomerismo
11.
J Org Chem ; 86(23): 16593-16613, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34806367

RESUMO

The potential of copper(I)-zeolite catalysis was evaluated in the three-component KA2-coupling mediated synthesis of α-tertiary propargylamines. Our archetypal copper(I)-doped zeolite CuI-USY proved to be efficient under ligand- and solvent-free conditions at 80 °C. Usable up to four times, this catalytic material enables the coupling of diverse ketones, alkynes, and amines with a broad functional group tolerance. A decarboxylative and a desilylative version, respectively, involving an alkynoic acid and trimethylsilylacetylene as alkyne surrogates, was also set up to bypass selectivity issues and/or to access α-tertiary propargylamines that are unattainable under standard KA2 conditions. Interestingly, the KA2-type coupling reactions were successfully linked to other CuI-catalyzed reactions, thus resulting in sequential one-pot processes under full CuI-USY catalysis.

12.
Molecules ; 26(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406753

RESUMO

The chalcogen bond (ChB) is a noncovalent interaction based on electrophilic features of regions of electron charge density depletion (σ-holes) located on bound atoms of group VI. The σ-holes of sulfur and heavy chalcogen atoms (Se, Te) (donors) can interact through their positive electrostatic potential (V) with nucleophilic partners such as lone pairs, π-clouds, and anions (acceptors). In the last few years, promising applications of ChBs in catalysis, crystal engineering, molecular biology, and supramolecular chemistry have been reported. Recently, we explored the high-performance liquid chromatography (HPLC) enantioseparation of fluorinated 3-arylthio-4,4'-bipyridines containing sulfur atoms as ChB donors. Following this study, herein we describe the comparative enantioseparation of three 5,5'-dibromo-2,2'-dichloro-3-selanyl-4,4'-bipyridines on polysaccharide-based chiral stationary phases (CSPs) aiming to understand function and potentialities of selenium σ-holes in the enantiodiscrimination process. The impact of the chalcogen substituent on enantioseparation was explored by using sulfur and non-chalcogen derivatives as reference substances for comparison. Our investigation also focused on the function of the perfluorinated aromatic ring as a π-hole donor recognition site. Thermodynamic quantities associated with the enantioseparation were derived from van't Hoff plots and local electron charge density of specific molecular regions of the interacting partners were inspected in terms of calculated V. On this basis, by correlating theoretical data and experimental results, the participation of ChBs and π-hole bonds in the enantiodiscrimination process was reasonably confirmed.


Assuntos
Calcogênios/química , Cromatografia Líquida/métodos , Compostos Heterocíclicos/química , Polissacarídeos/química , Piridinas/química , Piridinas/isolamento & purificação , Termodinâmica , Eletricidade Estática , Estereoisomerismo
13.
Angew Chem Int Ed Engl ; 60(35): 19281-19286, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34166563

RESUMO

Chalcogen bonding results from non-covalent interactions occurring between electrodeficient chalcogen atoms and Lewis bases. Among the chalcogens, tellurium is the strongest Lewis acid, but Te-based compounds are scarcely used as organocatalysts. For the first time, telluronium cations demonstrated impressive catalytic properties at low loadings in three benchmark reactions: the Friedel-Crafts bromination of anisole, the bromolactonization of ω-unsaturated carboxylic acids and the aza-Diels-Alder between Danishefsky's diene and imines. The ability of telluronium cations to interact with a Lewis base through chalcogen bonding was demonstrated on the basis of multi-nuclear (17 O, 31 P, and 125 Te) NMR analysis and DFT calculations.

14.
Gut ; 69(1): 158-167, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30833451

RESUMO

OBJECTIVE: Hepatitis D virus (HDV) is a circular RNA virus coinfecting hepatocytes with hepatitis B virus. Chronic hepatitis D results in severe liver disease and an increased risk of liver cancer. Efficient therapeutic approaches against HDV are absent. DESIGN: Here, we combined an RNAi loss-of-function and small molecule screen to uncover host-dependency factors for HDV infection. RESULTS: Functional screening unravelled the hypoxia-inducible factor (HIF)-signalling and insulin-resistance pathways, RNA polymerase II, glycosaminoglycan biosynthesis and the pyrimidine metabolism as virus-hepatocyte dependency networks. Validation studies in primary human hepatocytes identified the carbamoyl-phosphatesynthetase 2, aspartate transcarbamylase and dihydroorotase (CAD) enzyme and estrogen receptor alpha (encoded by ESR1) as key host factors for HDV life cycle. Mechanistic studies revealed that the two host factors are required for viral replication. Inhibition studies using N-(phosphonoacetyl)-L-aspartic acid and fulvestrant, specific CAD and ESR1 inhibitors, respectively, uncovered their impact as antiviral targets. CONCLUSION: The discovery of HDV host-dependency factors elucidates the pathogenesis of viral disease biology and opens therapeutic strategies for HDV cure.


Assuntos
Aspartato Carbamoiltransferase/genética , Ácido Aspártico/análogos & derivados , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Di-Hidro-Orotase/genética , Receptor alfa de Estrogênio/metabolismo , Fulvestranto/farmacologia , Hepatite D Crônica/tratamento farmacológico , Ácido Fosfonoacéticos/análogos & derivados , Pirimidinas/biossíntese , Antivirais/farmacologia , Aspartato Carbamoiltransferase/antagonistas & inibidores , Aspartato Carbamoiltransferase/metabolismo , Ácido Aspártico/farmacologia , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/antagonistas & inibidores , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular , Di-Hidro-Orotase/antagonistas & inibidores , Di-Hidro-Orotase/metabolismo , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Inativação Gênica , Hepatite D Crônica/genética , Hepatite D Crônica/metabolismo , Vírus Delta da Hepatite/fisiologia , Hepatócitos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Resistência à Insulina , Estágios do Ciclo de Vida , Mutação com Perda de Função , Ácido Fosfonoacéticos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/metabolismo , Transdução de Sinais , Replicação Viral
15.
Molecules ; 25(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992941

RESUMO

Positive electrostatic potential (V) values are often associated with σ- and π-holes, regions of lower electron density which can interact with electron-rich sites to form noncovalent interactions. Factors impacting σ- and π-holes may thus be monitored in terms of the shape and values of the resulting V. Further precious insights into such factors are obtained through a rigorous decomposition of the V values in atomic or atomic group contributions, a task here achieved by extending the Bader-Gatti source function (SF) for the electron density to V. In this article, this general methodology is applied to a series of 4,4'-bipyridine derivatives containing atoms from Groups VI (S, Se) and VII (Cl, Br), and the pentafluorophenyl group acting as a π-hole. As these molecules are characterized by a certain degree of conformational freedom due to the possibility of rotation around the two C-Ch bonds, from two to four conformational motifs could be identified for each structure through conformational search. On this basis, the impact of chemical and conformational features on σ- and π-hole regions could be systematically evaluated by computing the V values on electron density isosurfaces (VS) and by comparing and dissecting in atomic/atomic group contributions the VS maxima (VS,max) values calculated for different molecular patterns. The results of this study confirm that both chemical and conformational features may seriously impact σ- and π-hole regions and provide a clear analysis and a rationale of why and how this influence is realized. Hence, the proposed methodology might offer precious clues for designing changes in the σ- and π-hole regions, aimed at affecting their potential involvement in noncovalent interactions in a desired way.


Assuntos
Modelos Moleculares , Piridinas/química , Conformação Molecular
16.
Molecules ; 25(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397334

RESUMO

The 3,3',5,5'-tetrachloro-2-iodo-4,4'-bipyridine structure is proposed as a novel chemical scaffold for the design of new transthyretin (TTR) fibrillogenesis inhibitors. In the frame of a proof-of-principle exploration, four chiral 3,3',5,5'-tetrachloro-2-iodo-2'-substituted-4,4'- bipyridines were rationally designed and prepared from a simple trihalopyridine in three steps, including a Cu-catalysed Finkelstein reaction to introduce iodine atoms on the heteroaromatic scaffold, and a Pd-catalysed coupling reaction to install the 2'-substituent. The corresponding racemates, along with other five chiral 4,4'-bipyridines containing halogens as substituents, were enantioseparated by high-performance liquid chromatography in order to obtain pure enantiomer pairs. All stereoisomers were tested against the amyloid fibril formation (FF) of wild type (WT)-TTR and two mutant variants, V30M and Y78F, in acid mediated aggregation experiments. Among the 4,4'-bipyridine derivatives, interesting inhibition activity was obtained for both enantiomers of the 3,3',5,5'-tetrachloro-2'-(4-hydroxyphenyl)-2-iodo-4,4'-bipyridine. In silico docking studies were carried out in order to explore possible binding modes of the 4,4'-bipyridine derivatives into the TTR. The gained results point out the importance of the right combination of H-bond sites and the presence of iodine as halogen-bond donor. Both experimental and theoretical evidences pave the way for the utilization of the iodinated 4,4'-bipyridine core as template to design new promising inhibitors of TTR amyloidogenesis.


Assuntos
Amiloide/química , Hidrocarbonetos Iodados , Simulação de Acoplamento Molecular , Pré-Albumina/química , Agregados Proteicos , Piridinas , Substituição de Aminoácidos , Amiloide/genética , Humanos , Hidrocarbonetos Iodados/síntese química , Hidrocarbonetos Iodados/química , Mutação de Sentido Incorreto , Pré-Albumina/genética , Piridinas/síntese química , Piridinas/química
17.
Chemphyschem ; 20(21): 2874-2880, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31502391

RESUMO

The understanding of major zeolite applications is partially based on diffusion of molecules inside or outside microporous networks. However, it is still a challenge to measure such phenomena. The diffusion ordered nuclear magnetic resonance spectroscopy (DOSY) technique has been reported to measure a probe molecule's diffusion inside porous solids. Pulsed-field gradient (PFG)-NMR has been used herein to measure the self-diffusivity of different probe molecules, such as neopentane, benzene, toluene and 1-dodecene with increasing dynamic diameter, respectively, on a series of H-ZSM-5 zeolites. The latter materials exhibit different crystal sizes, Si/Al ratios and the presence (or absence) of crystalline defects. In addition, shaped zeolite bodies representing industrial catalysts were compared with the afore-mentioned samples.

18.
Molecules ; 24(24)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817814

RESUMO

Organocatalysis through chalcogen bonding (ChB) is in its infancy, as its proof-of-principle was only reported in 2016. Herein, we report the design and synthesis of new chiral ChB donors, as well as the catalytic activity evaluation of the 5,5'-dibromo-2,2'-dichloro-3-((perfluorophenyl)selanyl)-4,4'-bipyridine as organocatalyst. The latter is based on the use of two electron-withdrawing groups, a pentafluorophenyl ring and a tetrahalo-4,4'-bipyridine skeleton, as substituents at the selenium center. Atropisomery of the tetrahalo-4,4'-bipyridine motif provides a chiral environment to these new ChB donors. Their synthesis was achieved through either selective lithium exchange and trapping or a site-selective copper-mediated reaction. Pure enantiomers of the 3-selanyl-4,4'-bipyridine were obtained by high performance liquid chromatography enantioseparation on specific chiral stationary phase, and their absolute configuration was assigned by comparison of the measured and calculated electronic circular dichroism spectra. The capability of the selenium compound to participate in σ-hole-based interactions in solution was studied by 19F NMR. Even if no asymmetric induction has been observed so far, the new selenium motif proved to be catalytically active in the reduction of 2-phenylquinoline by Hantzsch ester.


Assuntos
Calcogênios/química , Piridinas/química , Dicroísmo Circular , Estereoisomerismo
19.
Beilstein J Org Chem ; 15: 1416-1424, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293691

RESUMO

1,3-Enynes are important building blocks in organic synthesis and also constitute the key motif in various bioactive natural products and functional materials. However, synthetic approaches to stereodefined substituted 1,3-enynes remain a challenge, as they are limited to Wittig and cross-coupling reactions. Herein, stereodefined 1,3-enynes, including tetrasubstituted ones, were straightforwardly synthesized from cis or trans-alkynylated oxiranes in good to excellent yields by a one-pot cascade process. The procedure relies on oxirane deprotonation, borylation and a stereospecific rearrangement of the so-formed alkynyloxiranyl borates. This stereospecific process overall transfers the cis or trans-stereochemistry of the starting alkynyloxiranes to the resulting 1,3-enynes.

20.
Chemistry ; 24(48): 12630-12637, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29905978

RESUMO

The new hybrid NHC gold(I) acetonitrile polyoxometalate complexes {[Au(IPr)(MeCN)+ ][H+ ]3 [SiW12 O404- ] (1), [Au(IPr)(MeCN)+ ][H+ ]2 [PMo12 O403- ] (2), [Au(IPr)(MeCN)+ ][H+ ]5 [P2 W18 O626- ] (3), [Au(IPr)(MeCN)+ ][H+ ]2 [PW12 O403- ] (4), [Au(IPr)(MeCN)+ ]3 [PMo12 O403- ] (5) and [Au(ItBu)(MeCN)+ ] [H+ ]2 [PMo12 O403- ] (6)} were readily synthesized in high yield and characterized by NMR and MS-ESI spectroscopy. In a preliminary catalytic study, their activity was assessed under heterogeneous conditions for the ene-yne rearrangement reaction and a cycloisomerization reaction. Additionally, their reactivity and recyclability were tested in the hydration of alkynes under homogeneous conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA