RESUMO
Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.
Assuntos
Sequestro de Carbono , Ecossistema , Solo , Dióxido de Carbono/análise , Tundra , Regiões Árticas , Ciclo do Carbono , Plantas , Carbono/análiseRESUMO
Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.
Assuntos
Sequestro de Carbono , Ecossistema , Regiões Árticas , Dióxido de Carbono , Mudança Climática , Plantas , Estações do Ano , Solo , TundraRESUMO
Open science (OS) is of paramount importance for the improvement of science worldwide and across research fields. Recent years have witnessed a transition toward open and transparent scientific practices, but there is still a long way to go. Early career researchers (ECRs) are of crucial relevance in the process of steering toward the standardization of OS practices, as they will become the future decision makers of the institutional change that necessarily accompanies this transition. Thus, it is imperative to gain insight into where ECRs stand on OS practices. Under this premise, the Open Science group of the Max Planck PhDnet designed and conducted an online survey to assess the stance toward OS practices of doctoral candidates from the Max Planck Society. As one of the leading scientific institutions for basic research worldwide, the Max Planck Society provides a considerable population of researchers from multiple scientific fields, englobed into three sections: biomedical sciences, chemistry, physics and technology, and human and social sciences. From an approximate total population of 5,100 doctoral candidates affiliated with the Max Planck Society, the survey collected responses from 568 doctoral candidates. The survey assessed self-reported knowledge, attitudes, and implementation of different OS practices, namely, open access publications, open data, preregistrations, registered reports, and replication studies. ECRs seemed to hold a generally positive view toward these different practices and to be interested in learning more about them. Furthermore, we found that ECRs' knowledge and positive attitudes predicted the extent to which they implemented these OS practices, although levels of implementation were rather low in the past. We observed differences and similarities between scientific sections. We discuss these differences in terms of need and feasibility to apply these OS practices in specific scientific fields, but additionally in relation to the incentive systems that shape scientific communities. Lastly, we discuss the implications that these results can have for the training and career advancement of ECRs, and ultimately, for the consolidation of OS practices.