Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nat Rev Mol Cell Biol ; 12(1): 60-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21179061

RESUMO

Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na(+)-dependent and proton-dependent secondary transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps.


Assuntos
Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Membrana Celular/química , Humanos
2.
Nature ; 491(7424): 468-72, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23086147

RESUMO

Calcium ions (Ca(2+)) have an important role as secondary messengers in numerous signal transduction processes, and cells invest much energy in controlling and maintaining a steep gradient between intracellular (∼0.1-micromolar) and extracellular (∼2-millimolar) Ca(2+) concentrations. Calmodulin-stimulated calcium pumps, which include the plasma-membrane Ca(2+)-ATPases (PMCAs), are key regulators of intracellular Ca(2+) in eukaryotes. They contain a unique amino- or carboxy-terminal regulatory domain responsible for autoinhibition, and binding of calcium-loaded calmodulin to this domain releases autoinhibition and activates the pump. However, the structural basis for the activation mechanism is unknown and a key remaining question is how calmodulin-mediated PMCA regulation can cover both basal Ca(2+) levels in the nanomolar range as well as micromolar-range Ca(2+) transients generated by cell stimulation. Here we present an integrated study combining the determination of the high-resolution crystal structure of a PMCA regulatory-domain/calmodulin complex with in vivo characterization and biochemical, biophysical and bioinformatics data that provide mechanistic insights into a two-step PMCA activation mechanism mediated by calcium-loaded calmodulin. The structure shows the entire PMCA regulatory domain and reveals an unexpected 2:1 stoichiometry with two calcium-loaded calmodulin molecules binding to different sites on a long helix. A multifaceted characterization of the role of both sites leads to a general structural model for calmodulin-mediated regulation of PMCAs that allows stringent, highly responsive control of intracellular calcium in eukaryotes, making it possible to maintain a stable, basal level at a threshold Ca(2+) concentration, where steep activation occurs.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Calmodulina/química , Eucariotos/metabolismo , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Sítios de Ligação , ATPases Transportadoras de Cálcio/genética , Calmodulina/metabolismo , Ativação Enzimática , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
3.
Biochim Biophys Acta ; 1850(3): 524-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24836520

RESUMO

BACKGROUND: P-type ATPases are ubiquitous ion and lipid pumps found in cellular membranes. P5A-ATPases constitute a poorly characterized subfamily of P-type ATPases present in all eukaryotic organisms but for which a transported substrate remains to be identified. SCOPE OF REVIEW: This review aims to discuss the available evidence which could lead to identification of possible substrates of P5A-ATPases. MAJOR CONCLUSIONS: The complex phenotypes resulting from the loss of P5A-ATPases in model organisms can be explained by a role of the P5A-ATPase in the endoplasmic reticulum (ER), where loss of function leads to broad and unspecific phenotypes related to the impairment of basic ER functions such as protein folding and processing. Genetic interactions in Saccharomyces cerevisiae point to a role of the endogenous P5A-ATPase Spf1p in separation of charges in the ER, in sterol metabolism, and in insertion of tail-anchored proteins in the ER membrane. A role for P5A-ATPases in vesicle formation would explain why sterol transport and distribution are affected in knock out cells, which in turn has a negative impact on the spontaneous insertion of tail-anchored proteins. It would also explain why secretory proteins destined for the Golgi and the cell wall have difficulties in reaching their final destination. Cations and phospholipids could both be transported substrates of P5A-ATPases and as each carry charges, transport of either might explain why a charge difference arises across the ER membrane. GENERAL SIGNIFICANCE: Identification of the substrate of P5A-ATPases would throw light on an important general process in the ER that is still not fully understood. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Transporte Biológico , Retículo Endoplasmático/metabolismo , Modelos Biológicos , Mutação , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esteróis/metabolismo , Especificidade por Substrato
4.
Biochim Biophys Acta ; 1850(3): 461-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24746984

RESUMO

BACKGROUND: ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. SCOPE OF REVIEW: This review aims to identify common mechanistic features in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. MAJOR CONCLUSIONS: Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit. Further, despite differences in overall architecture, both appear to operate by an alternating access mechanism and during transport they might allow access of phospholipids to the internal part of the transmembrane domain. The latter feature is obvious for ABC transporters, but phospholipids and other hydrophobic molecules have also been found embedded in P-type ATPase crystal structures. Taken together, in two diverse groups of pumps, nature appears to have evolved quite similar ways of flipping phospholipids. GENERAL SIGNIFICANCE: Our understanding of the structural basis for phospholipid flipping is still limited but it seems plausible that a general mechanism for phospholipid flipping exists in nature. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.


Assuntos
Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Animais , Transporte Biológico , Humanos , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Proteínas de Transferência de Fosfolipídeos/química , Conformação Proteica
5.
Plant J ; 80(6): 951-64, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267325

RESUMO

Acidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H+-ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro and in planta with PSY1R, a receptor kinase of the plasma membrane that serves as a receptor for the peptide growth hormone PSY1. The intracellular protein kinase domain of PSY1R phosphorylates AHA2/AHA1 at Thr-881, situated in the autoinhibitory region I of the C-terminal domain. When expressed in a yeast heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2 and PSY1R observed might provide a general paradigm for regulation of plasma membrane proton transport by receptor kinases.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Receptores de Peptídeos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Parede Celular/metabolismo , Citoplasma/metabolismo , Fosforilação , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , ATPases Translocadoras de Prótons/genética , Receptores de Peptídeos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plântula/genética , Plântula/metabolismo
6.
Analyst ; 140(18): 6313-20, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26280031

RESUMO

Accurate real-time measurements of the dynamics of proton concentration gradients are crucial for detailed molecular studies of proton translocation by membrane-bound enzymes. To reduce complexity, these measurements are often carried out with purified, reconstituted enzyme systems. Yet the most paramount problem to detect pH changes in reconstituted systems is that soluble pH reporters leak out of the vesicle system during the reconstitution procedure. This requires loading of substantial amounts of pH-sensors into the lumen of unilamellar liposomes during reconstitution. Here, we report the synthesis and detailed characterisation of two lipid-linked pH sensors employing amine-reactive forms of seminaphthorhodafluors (SNARF®-1 dye) and rhodamine probes (pHrodo™ Red dye). Lipid-conjugation of both dyes allowed for efficient detergent-based reconstitution of these pH indicators into liposomes. Vesicle-embedded pHrodo™ displayed excellent photostability and an optimal pH-response between 4 and 7. The suitability of the lipid-linked pHrodo™ probe as a pH reporter was demonstrated by assaying the activity of a plant plasma membrane H(+)-ATPase (proton pump) reconstituted in proteoliposomes.


Assuntos
Corantes Fluorescentes/química , Lipossomos/química , Fosfatidiletanolaminas/química , Fosfolipídeos/química , Amidas/química , Benzopiranos/síntese química , Benzopiranos/química , Etanolamina/química , Corantes Fluorescentes/síntese química , Concentração de Íons de Hidrogênio , Naftóis/síntese química , Naftóis/química , ATPases Translocadoras de Prótons/metabolismo , Prótons , Rodaminas/síntese química , Rodaminas/química
7.
J Biol Chem ; 288(14): 9610-9618, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23420846

RESUMO

The minimal proton pumping machinery of the Arabidopsis thaliana P-type plasma membrane H(+)-ATPase isoform 2 (AHA2) consists of an aspartate residue serving as key proton donor/acceptor (Asp-684) and an arginine residue controlling the pKa of the aspartate. However, other important aspects of the proton transport mechanism such as gating, and the ability to occlude protons, are still unclear. An asparagine residue (Asn-106) in transmembrane segment 2 of AHA2 is conserved in all P-type plasma membrane H(+)-ATPases. In the crystal structure of the plant plasma membrane H(+)-ATPase, this residue is located in the putative ligand entrance pathway, in close proximity to the central proton donor/acceptor Asp-684. Substitution of Asn-106 resulted in mutant enzymes with significantly reduced ability to transport protons against a membrane potential. Sensitivity toward orthovanadate was increased when Asn-106 was substituted with an aspartate residue, but decreased in mutants with alanine, lysine, glutamine, or threonine replacement of Asn-106. The apparent proton affinity was decreased for all mutants, most likely due to a perturbation of the local environment of Asp-684. Altogether, our results demonstrate that Asn-106 is important for closure of the proton entrance pathway prior to proton translocation across the membrane.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Asparagina/química , Bombas de Próton/fisiologia , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/fisiologia , Adenosina Trifosfatases/química , Arginina/química , Asparagina/genética , Transporte Biológico , Membrana Celular/enzimologia , Cristalografia por Raios X/métodos , Citosol/metabolismo , DNA/genética , Eletroquímica/métodos , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Modelos Moleculares , Mutação , Regiões Promotoras Genéticas , Conformação Proteica , Prótons , Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 288(37): 26419-29, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23836891

RESUMO

Plasma membrane H(+)-ATPases form a subfamily of P-type ATPases responsible for pumping protons out of cells and are essential for establishing and maintaining the crucial transmembrane proton gradient in plants and fungi. Here, we report the reconstitution of the Arabidopsis thaliana plasma membrane H(+)-ATPase isoform 2 into soluble nanoscale lipid bilayers, also termed nanodiscs. Based on native gel analysis and cross-linking studies, the pump inserts into nanodiscs as a functional monomer. Insertion of the H(+)-ATPase into nanodiscs has the potential to enable structural and functional characterization using techniques normally applicable only for soluble proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Membrana Celular/enzimologia , Bicamadas Lipídicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Reagentes de Ligações Cruzadas , Ativação Enzimática , Escherichia coli/metabolismo , Isoenzimas/metabolismo , Microscopia Eletrônica de Transmissão , Saccharomyces cerevisiae/metabolismo , Ressonância de Plasmônio de Superfície
9.
Pflugers Arch ; 466(7): 1227-40, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24077738

RESUMO

Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other and thereby help generate membrane lipid asymmetry. Among these ATP-driven transporters, the P4 subfamily of P-type ATPases (P4-ATPases) comprises lipid flippases that catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of cell membranes. While initially characterized as aminophospholipid translocases, recent studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates, including lysophospholipids and synthetic alkylphospholipids. At the same time, the cellular processes known to be directly or indirectly affected by this class of transporters have expanded to include the regulation of membrane traffic, cytoskeletal dynamics, cell division, lipid metabolism, and lipid signaling. In this review, we will summarize the basic features of P4-ATPases and the physiological implications of their lipid transport activity in the cell.


Assuntos
Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Animais , Membrana Celular/enzimologia , Humanos , Dados de Sequência Molecular , Proteínas de Transferência de Fosfolipídeos/química , Fosfolipídeos/metabolismo , Especificidade da Espécie , Especificidade por Substrato
10.
J Biol Chem ; 287(7): 4904-13, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22174420

RESUMO

Phosphorylation is an important posttranslational modification of proteins in living cells and primarily serves regulatory purposes. Several methods were employed for isolating phosphopeptides from proteolytically digested plasma membranes of Arabidopsis thaliana. After a mass spectrometric analysis of the resulting peptides we could identify 10 different phosphorylation sites in plasma membrane H(+)-ATPases AHA1, AHA2, AHA3, and AHA4/11, five of which have not been reported before, bringing the total number of phosphosites up to 11, which is substantially higher than reported so far for any other P-type ATPase. Phosphosites were almost exclusively (9 of 10) in the terminal regulatory domains of the pumps. The AHA2 isoform was subsequently expressed in the yeast Saccharomyces cerevisiae. The plant protein was phosphorylated at multiple sites in yeast, and surprisingly, seven of nine of the phosphosites identified in AHA2 were identical in the plant and fungal systems even though none of the target sequences in AHA2 show homology to proteins of the fungal host. These findings suggest an unexpected accessibility of the terminal regulatory domain of plasma membrane H(+)-ATPase to protein kinase action.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Membrana Celular/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membrana Celular/genética , Fosforilação/fisiologia , Estrutura Terciária de Proteína , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
11.
J Biol Chem ; 287(34): 28336-48, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22730321

RESUMO

P5 ATPases constitute the least studied group of P-type ATPases, an essential family of ion pumps in all kingdoms of life. Although P5 ATPases are present in every eukaryotic genome analyzed so far, they have remained orphan pumps, and their biochemical function is obscure. We show that a P5A ATPase from barley, HvP5A1, locates to the endoplasmic reticulum and is able to rescue knock-out mutants of P5A genes in both Arabidopsis thaliana and Saccharomyces cerevisiae. HvP5A1 spontaneously forms a phosphorylated reaction cycle intermediate at the catalytic residue Asp-488, whereas, among all plant nutrients tested, only Ca(2+) triggers dephosphorylation. Remarkably, Ca(2+)-induced dephosphorylation occurs at high apparent [Ca(2+)] (K(i) = 0.25 mM) and is independent of the phosphatase motif of the pump and the putative binding site for transported ligands located in M4. Taken together, our results rule out that Ca(2+) is a transported substrate but indicate the presence of a cytosolic low affinity Ca(2+)-binding site, which is conserved among P-type pumps and could be involved in pump regulation. Our work constitutes the first characterization of a P5 ATPase phosphoenzyme and points to Ca(2+) as a modifier of its function.


Assuntos
Adenosina Trifosfatases/metabolismo , Cálcio/metabolismo , Hordeum/enzimologia , Proteínas de Plantas/metabolismo , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Sítios de Ligação , Técnicas de Inativação de Genes , Teste de Complementação Genética , Hordeum/genética , Fosforilação/fisiologia , Proteínas de Plantas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
12.
Plant Cell ; 22(4): 1313-32, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20418496

RESUMO

The plasma membrane H(+)-ATPase (PM H(+)-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H(+)-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H(+)-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H(+)-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H(+)-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H(+)-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H(+)-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP40/genética , Concentração de Íons de Hidrogênio , Microscopia Confocal , Mutação , Raízes de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , ATPases Translocadoras de Prótons/genética , RNA de Plantas/genética , Cloreto de Sódio/farmacologia
13.
Nature ; 450(7172): 1111-4, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18075595

RESUMO

A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H+-ATPase (the proton pump) in plants and fungi, and Na+,K+-ATPase (the sodium-potassium pump) in animals. The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis. The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na+,K+-ATPase and Ca2+-ATPase are type II. Electron microscopy has revealed the overall shape of proton pumps, however, an atomic structure has been lacking. Here we present the first structure of a P-type proton pump determined by X-ray crystallography. Ten transmembrane helices and three cytoplasmic domains define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle of the membrane plane where it is lined by conserved hydrophilic and charged residues. Proton transport against a high membrane potential is readily explained by this structural arrangement.


Assuntos
Arabidopsis/enzimologia , Membrana Celular/enzimologia , Bombas de Próton/química , Sítios de Ligação , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Cristalografia por Raios X , Transporte de Íons , Modelos Moleculares , Fosforilação , Bombas de Próton/metabolismo , Prótons , Eletricidade Estática , Homologia Estrutural de Proteína
14.
Proc Natl Acad Sci U S A ; 107(50): 21400-5, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21098259

RESUMO

The activity of P-type plasma membrane H(+)-ATPases is modulated by H(+) and cations, with K(+) and Ca(2+) being of physiological relevance. Using X-ray crystallography, we have located the binding site for Rb(+) as a K(+) congener, and for Tb(3+) and Ho(3+) as Ca(2+) congeners. Rb(+) is found coordinated by a conserved aspartate residue in the phosphorylation domain. A single Tb(3+) ion is identified positioned in the nucleotide-binding domain in close vicinity to the bound nucleotide. Ho(3+) ions are coordinated at two distinct sites within the H(+)-ATPase: One site is at the interface of the nucleotide-binding and phosphorylation domains, and the other is in the transmembrane domain toward the extracellular side. The identified binding sites are suggested to represent binding pockets for regulatory cations and a H(+) binding site for protons leaving the pump molecule. This implicates Ho(3+) as a novel chemical tool for identification of proton binding sites.


Assuntos
Cátions/química , Membrana Celular/química , Estrutura Terciária de Proteína , Bombas de Próton/química , Prótons , Sítios de Ligação , Cristalografia por Raios X , Teste de Complementação Genética , Metais/química , Dados de Sequência Molecular , Mutação Puntual , Bombas de Próton/genética , Saccharomyces cerevisiae
15.
Plant Physiol ; 156(4): 2235-43, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21685179

RESUMO

The Arabidopsis (Arabidopsis thaliana) genome encodes nine Salt Overly Sensitive3 (SOS3)-like calcium-binding proteins (SCaBPs; also named calcineurin B-like protein [CBL]) and 24 SOS2-like protein kinases (PKSs; also named as CBL-interacting protein kinases [CIPKs]). A general regulatory mechanism between these two families is that SCaBP calcium sensors activate PKS kinases by interacting with their FISL motif. In this study, we demonstrated that phosphorylation of SCaBPs by their functional interacting PKSs is another common regulatory mechanism. The phosphorylation site serine-216 at the C terminus of SCaBP1 by PKS24 was identified by liquid chromatography-quadrupole mass spectrometry analysis. This serine residue is conserved within the PFPF motif at the C terminus of SCaBP proteins. Phosphorylation of this site of SCaBP8 by SOS2 has been determined previously. We further showed that CIPK23/PKS17 phosphorylated CBL1/SCaBP5 and CBL9/SCaBP7 and PKS5 phosphorylated SCaBP1 at the same site in vitro and in vivo. Furthermore, the phosphorylation stabilized the interaction between SCaBP and PKS proteins. This tight interaction neutralized the inhibitory effect of PKS5 on plasma membrane H(+)-ATPase activity. These data indicate that SCaBP phosphorylation by their interacting PKS kinases is a critical component of the SCaBP-PKS regulatory pathway in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Sequência Conservada/genética , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
16.
PLoS Biol ; 7(6): e1000139, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19564897

RESUMO

Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4-mediated immune signal transduction, we purified components of the RIN4 protein complex. We identified six novel proteins that had not previously been implicated in RIN4 signaling, including the plasma membrane (PM) H(+)-ATPases AHA1 and/or AHA2. RIN4 interacts with AHA1 and AHA2 both in vitro and in vivo. RIN4 overexpression and knockout lines exhibit differential PM H(+)-ATPase activity. PM H(+)-ATPase activation induces stomatal opening, enabling bacteria to gain entry into the plant leaf; inactivation induces stomatal closure thus restricting bacterial invasion. The rin4 knockout line exhibited reduced PM H(+)-ATPase activity and, importantly, its stomata could not be re-opened by virulent Pseudomonas syringae. We also demonstrate that RIN4 is expressed in guard cells, highlighting the importance of this cell type in innate immunity. These results indicate that the Arabidopsis protein RIN4 functions with the PM H(+)-ATPase to regulate stomatal apertures, inhibiting the entry of bacterial pathogens into the plant leaf during infection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas de Transporte/metabolismo , Estômatos de Plantas/fisiologia , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/fisiologia , Pseudomonas syringae/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Western Blotting , Proteínas de Transporte/genética , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Espectrometria de Massas , Microscopia Confocal , Mutação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ligação Proteica , ATPases Translocadoras de Prótons/genética , Pseudomonas syringae/patogenicidade , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido , Virulência
17.
J Biol Chem ; 285(10): 7344-50, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20068040

RESUMO

The activity of many P-type ATPases is found to be regulated by interacting proteins or autoinhibitory elements located in N- or C-terminal extensions. An extended C terminus of fungal and plant P-type plasma membrane H(+)-ATPases has long been recognized to be part of a regulatory apparatus involving an autoinhibitory domain. Here we demonstrate that both the N and the C termini of the plant plasma membrane H(+)-ATPase are directly involved in controlling the pump activity state and that N-terminal displacements are coupled to secondary modifications taking place at the C-terminal end. This identifies the first group of P-type ATPases for which both ends of the polypeptide chain constitute regulatory domains, which together contribute to the autoinhibitory apparatus. This suggests an intricate mechanism of cis-regulation with both termini of the protein communicating to obtain the necessary control of the enzyme activity state.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , ATPases de Cloroplastos Translocadoras de Prótons/antagonistas & inibidores , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , ATPases de Cloroplastos Translocadoras de Prótons/química , ATPases de Cloroplastos Translocadoras de Prótons/genética , Ativação Enzimática , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína
18.
J Biol Chem ; 285(41): 31243-52, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20650903

RESUMO

Heavy metal pumps (P1B-ATPases) are important for cellular heavy metal homeostasis. AtHMA4, an Arabidopsis thaliana heavy metal pump of importance for plant Zn(2+) nutrition, has an extended C-terminal domain containing 13 cysteine pairs and a terminal stretch of 11 histidines. Using a novel size-exclusion chromatography, inductively coupled plasma mass spectrometry approach we report that the C-terminal domain of AtHMA4 is a high affinity Zn(2+) and Cd(2+) chelator with capacity to bind 10 Zn(2+) ions per C terminus. When AtHMA4 is expressed in a Zn(2+)-sensitive zrc1 cot1 yeast strain, sequential removal of the histidine stretch and the cysteine pairs confers a gradual increase in Zn(2+) and Cd(2+) tolerance and lowered Zn(2+) and Cd(2+) content of transformed yeast cells. We conclude that the C-terminal domain of AtHMA4 serves a dual role as Zn(2+) and Cd(2+) chelator (sensor) and as a regulator of the efficiency of Zn(2+) and Cd(2+) export. The identification of a post-translational handle on Zn(2+) and Cd(2+) transport efficiency opens new perspectives for regulation of Zn(2+) nutrition and tolerance in eukaryotes.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cádmio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Zinco/metabolismo , Adenosina Trifosfatases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Transporte de Íons/fisiologia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Plant Cell Environ ; 34(3): 406-17, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21062316

RESUMO

This paper reports the phenomenon of acquired cross-tolerance to oxidative stress in plants and investigates the activity of specific Ca²+ transport systems mediating this phenomenon. Nicotiana benthamiana plants were infected with Potato virus X (PVX) and exposed to oxidative [either ultraviolet (UV-C) or H2O2] stress. Plant adaptive responses were assessed by the combined application of a range of electrophysiological (non-invasive microelectrode ion flux measurements), biochemical (Ca²+- and H+-ATPase activity), imaging (fluorescence lifetime imaging measurements of changes in intracellular Ca²+ concentrations), pharmacological and cytological transmission electrone microscopy techniques. Virus-infected plants had a better ability to control UV-induced elevations in cytosolic-free Ca²+ and prevent structural and functional damage of chloroplasts. Taken together, our results suggest a high degree of crosstalk between UV and pathogen-induced oxidative stresses, and highlight the crucial role of Ca²+ efflux systems in acquired resistance to oxidative stress in plants.


Assuntos
Antiporters/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Peróxido de Hidrogênio/farmacologia , Nicotiana/virologia , Estresse Oxidativo , Potexvirus/patogenicidade , Cálcio/análise , ATPases Transportadoras de Cálcio/metabolismo , Membrana Celular/metabolismo , Cloroplastos/efeitos da radiação , Cloroplastos/virologia , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Estresse Fisiológico , Nicotiana/enzimologia , Nicotiana/efeitos da radiação , Raios Ultravioleta
20.
Biochim Biophys Acta ; 1787(4): 207-20, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19388138

RESUMO

P-type ATPases catalyze the selective active transport of ions like H+, Na+, K+, Ca2+, Zn2+, and Cu2+ across diverse biological membrane systems. Many members of the P-type ATPase protein family, such as the Na+,K+-, H+,K+-, Ca2+-, and H+-ATPases, are involved in the development of pathophysiological conditions or provide critical function to pathogens. Therefore, they seem to be promising targets for future drugs and novel antifungal agents and herbicides. Here, we review the current knowledge about P-type ATPase inhibitors and their present use as tools in science, medicine, and biotechnology. Recent structural information on a variety of P-type ATPase family members signifies that all P-type ATPases can be expected to share a similar basic structure and a similar basic machinery of ion transport. The ion transport pathway crossing the membrane lipid bilayer is constructed of two access channels leading from either side of the membrane to the ion binding sites at a central cavity. The selective opening and closure of the access channels allows vectorial access/release of ions from the binding sites. Recent structural information along with new homology modeling of diverse P-type ATPases in complex with known ligands demonstrate that the most proficient way for the development of efficient and selective drugs is to target their ion transport pathway.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Medicina , Preparações Farmacêuticas , Ciência , Adenosina Trifosfatases/química , Animais , Humanos , Modelos Moleculares , Inibidores da Bomba de Prótons , Bombas de Próton/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA