Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Breast Cancer Res ; 22(1): 14, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005287

RESUMO

After publication of the original article [1], we were notified that an author's surname has been erroneously spelled. Elisabetta Maragoni's family name should be replaced with Marangoni.

2.
Breast Cancer Res ; 21(1): 135, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801615

RESUMO

BACKGROUND: Endocrine therapies are still the main strategy for the treatment of oestrogen receptor-positive (ER+) breast cancers (BC), but resistance remains problematic. Cross-talk between ER and PI3K/AKT/mTORC has been associated with ligand-independent transcription of ER. We have previously reported the anti-proliferative effects of the combination of everolimus (an mTORC1 inhibitor) with endocrine therapy in resistance models, but potential routes of escape via AKT signalling can lead to resistance; therefore, the use of dual mTORC1/2 inhibitors has met with significant interest. METHODS: To address this, we tested the effect of vistusertib, a dual mTORC1 and mTORC2 inhibitor, in a panel of endocrine-resistant and endocrine-sensitive ER+ BC cell lines, with varying PTEN, PIK3CA and ESR1 mutation status. End-points included proliferation, cell signalling, cell cycle and effect on ER-mediated transcription. Two patient-derived xenografts (PDX) modelling endocrine resistance were used to assess the efficacy of vistusertib, fulvestrant or the combination on tumour progression, and biomarker studies were conducted using immunohistochemistry and RNA-seq technologies. RESULTS: Vistusertib caused a dose-dependent decrease in proliferation of all the cell lines tested and reduced abundance of mTORC1, mTORC2 and cell cycle markers, but caused an increase in abundance of EGFR, IGF1R and ERBB3 in a context-dependent manner. ER-mediated transcription showed minimal effect of vistusertib. Combined therapy of vistusertib with fulvestrant showed synergy in two ER+ PDX models of resistance to endocrine therapy and delayed tumour progression after cessation of therapy. CONCLUSIONS: These data support the notion that models of acquired endocrine resistance may have a different sensitivity to mTOR inhibitor/endocrine therapy combinations.

3.
Breast Cancer Res ; 20(1): 44, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880014

RESUMO

BACKGROUND: Endocrine therapies are the mainstay of treatment for oestrogen receptor (ER)-positive (ER+) breast cancer (BC). However, resistance remains problematic largely due to enhanced cross-talk between ER and growth factor pathways, circumventing the need for steroid hormones. Previously, we reported the anti-proliferative effect of everolimus (RAD001-mTORC1 inhibitor) with endocrine therapy in resistance models; however, potential routes of escape from treatment via ERBB2/3 signalling were observed. We hypothesised that combined targeting of three cellular nodes (ER, ERBB, and mTORC1) may provide enhanced long-term clinical utility. METHODS: A panel of ER+ BC cell lines adapted to long-term oestrogen deprivation (LTED) and expressing ESR1 wt or ESR1 Y537S , modelling acquired resistance to an aromatase-inhibitor (AI), were treated in vitro with a combination of RAD001 and neratinib (pan-ERBB inhibitor) in the presence or absence of oestradiol (E2), tamoxifen (4-OHT), or fulvestrant (ICI182780). End points included proliferation, cell signalling, cell cycle, and effect on ER-mediated transactivation. An in-vivo model of AI resistance was treated with monotherapies and combinations to assess the efficacy in delaying tumour progression. RNA-seq analysis was performed to identify changes in global gene expression as a result of the indicated therapies. RESULTS: Here, we show RAD001 and neratinib (pan-ERBB inhibitor) caused a concentration-dependent decrease in proliferation, irrespective of the ESR1 mutation status. The combination of either agent with endocrine therapy further reduced proliferation but the maximum effect was observed with a triple combination of RAD001, neratinib, and endocrine therapy. In the absence of oestrogen, RAD001 caused a reduction in ER-mediated transcription in the majority of the cell lines, which associated with a decrease in recruitment of ER to an oestrogen-response element on the TFF1 promoter. Contrastingly, neratinib increased both ER-mediated transactivation and ER recruitment, an effect reduced by the addition of RAD001. In-vivo analysis of an LTED model showed the triple combination of RAD001, neratinib, and fulvestrant was most effective at reducing tumour volume. Gene set enrichment analysis revealed that the addition of neratinib negated the epidermal growth factor (EGF)/EGF receptor feedback loops associated with RAD001. CONCLUSIONS: Our data support the combination of therapies targeting ERBB2/3 and mTORC1 signalling, together with fulvestrant, in patients who relapse on endocrine therapy and retain a functional ER.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/genética , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/genética , Estradiol/farmacologia , Estrogênios/metabolismo , Everolimo/farmacologia , Feminino , Fulvestranto/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/patologia , Quinolinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia
4.
Br J Cancer ; 119(3): 313-322, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29991699

RESUMO

BACKGROUND: Resistance to endocrine therapy remains a major clinical problem in the treatment of oestrogen-receptor positive (ER+) breast cancer. Studies show androgen-receptor (AR) remains present in 80-90% of metastatic breast cancers providing support for blockade of AR-signalling. However, clinical studies with abiraterone, which blocks cytochrome P450 17A1 (CYP17A1) showed limited benefit. METHODS: In order to address this, we assessed the impact of abiraterone on cell-viability, cell-death, ER-mediated transactivation and recruitment to target promoters. together with ligand-binding assays in a panel of ER+ breast cancer cell lines that were either oestrogen-dependent, modelling endocrine-sensitive disease, or oestrogen-independent modelling relapse on an aromatase inhibitor. The latter, harboured wild-type (wt) or naturally occurring ESR1 mutations. RESULTS: Similar to oestrogen, abiraterone showed paradoxical impact on proliferation by stimulating cell growth or death, depending on whether the cells are hormone-dependent or have undergone prolonged oestrogen-deprivation, respectively. Abiraterone increased ER-turnover, induced ER-mediated transactivation and ER-degradation via the proteasome. CONCLUSIONS: Our study confirms the oestrogenic activity of abiraterone and highlights its differential impact on cells dependent on oestrogen for their proliferation vs. those that are ligand-independent and harbour wt or mutant ESR1. These properties could impact the clinical efficacy of abiraterone in breast cancer.


Assuntos
Androstenos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/genética , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Apoptose/efeitos dos fármacos , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Mutação , Metástase Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/patologia , Receptores Androgênicos/genética , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia
5.
Breast Cancer Res ; 18(1): 58, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246191

RESUMO

BACKGROUND: Therapies targeting estrogenic stimulation in estrogen receptor-positive (ER+) breast cancer (BC) reduce mortality, but resistance remains a major clinical problem. Molecular studies have shown few high-frequency mutations to be associated with endocrine resistance. In contrast, expression profiling of primary ER+ BC samples has identified several promising signatures/networks for targeting. METHODS: To identify common adaptive mechanisms associated with resistance to aromatase inhibitors (AIs), we assessed changes in global gene expression during adaptation to long-term estrogen deprivation (LTED) in a panel of ER+ BC cell lines cultured in 2D on plastic (MCF7, T47D, HCC1428, SUM44 and ZR75.1) or in 3D on collagen (MCF7) to model the stromal compartment. Furthermore, dimethyl labelling followed by LC-MS/MS was used to assess global changes in protein abundance. The role of target genes/proteins on proliferation, ER-mediated transcription and recruitment of ER to target gene promoters was analysed. RESULTS: The cholesterol biosynthesis pathway was the common upregulated pathway in the ER+ LTED but not the ER- LTED cell lines, suggesting a potential mechanism dependent on continued ER expression. Targeting the individual genes of the cholesterol biosynthesis pathway with siRNAs caused a 30-50 % drop in proliferation. Further analysis showed increased expression of 25-hydroxycholesterol (HC) in the MCF7 LTED cells. Exogenous 25-HC or 27-HC increased ER-mediated transcription and expression of the endogenous estrogen-regulated gene TFF1 in ER+ LTED cells but not in the ER- LTED cells. Additionally, recruitment of the ER and CREB-binding protein (CBP) to the TFF1 and GREB1 promoters was increased upon treatment with 25-HC and 27-HC. In-silico analysis of two independent studies of primary ER+ BC patients treated with neoadjuvant AIs showed that increased expression of MSMO1, EBP, LBR and SQLE enzymes, required for cholesterol synthesis and increased in our in-vitro models, was significantly associated with poor response to endocrine therapy. CONCLUSION: Taken together, these data provide support for the role of cholesterol biosynthesis enzymes and the cholesterol metabolites, 25-HC and 27-HC, in a novel mechanism of resistance to endocrine therapy in ER+ BC that has potential as a therapeutic target.


Assuntos
Antineoplásicos Hormonais/farmacologia , Vias Biossintéticas , Neoplasias da Mama/metabolismo , Colesterol/biossíntese , Resistencia a Medicamentos Antineoplásicos , Estrogênios/metabolismo , Receptores de Estrogênio/metabolismo , Antineoplásicos Hormonais/uso terapêutico , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ésteres do Colesterol/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Fenótipo , Prognóstico , Proteoma , Proteômica/métodos , Interferência de RNA , Transcriptoma , Resultado do Tratamento
6.
Breast Cancer Res ; 16(5): 447, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25358600

RESUMO

INTRODUCTION: Endocrine therapies target oestrogenic stimulation of breast cancer (BC) growth, but resistance remains problematic. Our aims in this study were (1) to identify genes most strongly associated with resistance to endocrine therapy by intersecting global gene transcription data from patients treated presurgically with the aromatase inhibitor anastrazole with those from MCF7 cells adapted to long-term oestrogen deprivation (LTED) (2) to assess the clinical value of selected genes in public clinical data sets and (3) to determine the impact of targeting these genes with novel agents. METHODS: Gene expression and Ki67 data were available from 69 postmenopausal women with oestrogen receptor-positive (ER+) early BC, at baseline and 2 weeks after anastrazole treatment, and from cell lines adapted to LTED. The functional consequences of target genes on proliferation, ER-mediated transcription and downstream cell signalling were assessed. RESULTS: By intersecting genes predictive of a poor change in Ki67 with those upregulated in LTED cells, we identified 32 genes strongly correlated with poor antiproliferative response that were associated with inflammation and/or immunity. In a panel of LTED cell lines, C-X-C chemokine receptor type 7 (CXCR7) and CXCR4 were upregulated compared to their wild types (wt), and CXCR7, but not CXCR4, was associated with reduced relapse-free survival in patients with ER+ BC. The CXCR4 small interfering RNA variant (siCXCR4) had no specific effect on the proliferation of wt-SUM44, wt-MCF7 and their LTED derivatives. In contrast, siCXCR7, as well as CCX733, a CXCR7 antagonist, specifically suppressed the proliferation of MCF7-LTED cells. siCXCR7 suppressed proteins associated with G1/S transition and inhibited ER transactivation in MCF7-LTED, but not wt-MCF7, by impeding association between ER and proline-, glutamic acid- and leucine-rich protein 1, an ER coactivator. CONCLUSIONS: These data highlight CXCR7 as a potential therapeutic target warranting clinical investigation in endocrine-resistant BC.


Assuntos
Antineoplásicos Hormonais/farmacologia , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/metabolismo , Receptores CXCR/metabolismo , Receptores de Estrogênio/metabolismo , Antineoplásicos Hormonais/uso terapêutico , Apoptose , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Fosforilação , Pós-Menopausa , Processamento de Proteína Pós-Traducional , Receptores CXCR/genética , Ativação Transcricional
7.
PLoS Genet ; 7(4): e1001382, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21552322

RESUMO

Approximately 80% of human breast carcinomas present as oestrogen receptor α-positive (ER+ve) disease, and ER status is a critical factor in treatment decision-making. Recently, single nucleotide polymorphisms (SNPs) in the region immediately upstream of the ER gene (ESR1) on 6q25.1 have been associated with breast cancer risk. Our investigation of factors associated with the level of expression of ESR1 in ER+ve tumours has revealed unexpected associations between genes in this region and ESR1 expression that are important to consider in studies of the genetic causes of breast cancer risk. RNA from tumour biopsies taken from 104 postmenopausal women before and after 2 weeks treatment with an aromatase (oestrogen synthase) inhibitor was analyzed on Illumina 48K microarrays. Multiple-testing corrected Spearman correlation revealed that three previously uncharacterized open reading frames (ORFs) located immediately upstream of ESR1, C6ORF96, C6ORF97, and C6ORF211 were highly correlated with ESR1 (Rs =  0.67, 0.64, and 0.55 respectively, FDR<1 × 10(-7)). Publicly available datasets confirmed this relationship in other groups of ER+ve tumours. DNA copy number changes did not account for the correlations. The correlations were maintained in cultured cells. An ERα antagonist did not affect the ORFs' expression or their correlation with ESR1, suggesting their transcriptional co-activation is not directly mediated by ERα. siRNA inhibition of C6ORF211 suppressed proliferation in MCF7 cells, and C6ORF211 positively correlated with a proliferation metagene in tumours. In contrast, C6ORF97 expression correlated negatively with the metagene and predicted for improved disease-free survival in a tamoxifen-treated published dataset, independently of ESR1. Our observations suggest that some of the biological effects previously attributed to ER could be mediated and/or modified by these co-expressed genes. The co-expression and function of these genes may be important influences on the recently identified relationship between SNPs in this region and breast cancer risk.


Assuntos
Neoplasias da Mama/genética , Cromossomos Humanos Par 6/genética , Receptor alfa de Estrogênio/genética , Aromatase/metabolismo , Inibidores da Aromatase , Linhagem Celular Tumoral , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Loci Gênicos , Humanos , Fases de Leitura Aberta , RNA Interferente Pequeno/genética , Ativação Transcricional
8.
Cancer Res ; 84(1): 17-25, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37801608

RESUMO

The combination of endocrine therapy and CDK4/6 inhibitors such as palbociclib is an effective and well-tolerated treatment for estrogen receptor-positive (ER+) breast cancer, yet many patients relapse with therapy-resistant disease. Determining the mechanisms underlying endocrine therapy resistance is limited by the lack of ability to fully recapitulate inter- and intratumor heterogeneity in vitro and of availability of tumor samples from women with disease progression or relapse. In this study, multiple cell line models of resistant disease were used for both two-dimensional (2D)- and three-dimensional (3D)-based inhibitor screening. The screens confirmed the previously reported role of pro-proliferative pathways, such as PI3K-AKT-mTOR, in endocrine therapy resistance and additionally identified the transcription-associated cyclin-dependent kinase CDK9 as a common hit in ER+ cell lines and patient-derived organoids modeling endocrine therapy-resistant disease in both the palbociclib-sensitive and palbociclib-resistant settings. The CDK9 inhibitor, AZD4573, currently in clinical trials for hematologic malignancies, acted synergistically with palbociclib in these ER+in vitro 2D and 3D models. In addition, in two independent endocrine- and palbociclib-resistance patient-derived xenografts, treatment with AZD4573 in combination with palbociclib and fulvestrant resulted in tumor regression. Tumor transcriptional profiling identified a set of transcriptional and cell-cycle regulators differentially downregulated only in combination-treated tumors. Together, these findings identify a clinically tractable combination strategy for overcoming resistance to endocrine therapy and CDK4/6 inhibitors in breast cancer and provide insight into the potential mechanism of drug efficacy in targeting treatment-resistant disease. SIGNIFICANCE: Targeting transcription-associated CDK9 synergizes with CDK4/6 inhibitor to drive tumor regression in multiple models of endocrine- and palbociclib-resistant ER+ breast cancer, which could address the challenge of overcoming resistance in patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosfatidilinositol 3-Quinases , Resistencia a Medicamentos Antineoplásicos/genética , Receptores de Estrogênio/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Recidiva , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quinase 9 Dependente de Ciclina/genética
9.
Breast Cancer Res ; 14(3): R78, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22608253

RESUMO

INTRODUCTION: The majority of breast tumors at primary diagnosis are estrogen receptor positive (ER+). Estrogen (E) mediates its effects by binding to the ER. Therapies targeting the estrogenic stimulation of tumor growth reduce mortality from ER+ breast cancer. However, resistance remains a major clinical problem. METHODS: To identify molecular mechanisms associated with resistance to E-deprivation, we assessed the temporal changes in global gene expression during adaptation to long-term culture of MCF7 human breast cancer cells in the absence of estradiol (E2), long term estrogen deprived (LTED), that leads to recovery of proliferative status and models resistance to an aromatase inhibitor (AI). The expression levels of proteins were determined by western blotting. Proliferation assays were carried out using the dual platelet derived growth factor receptor (PDGFR)/Abelson tyrosine kinase (Abl) inhibitor nilotinib. Luciferase reporter assays were used to determine effects on ER-mediated transactivation. Changes in recruitment of cofactors to the gene regulated by estrogen in breast cancer 1 (GREB1) promoter were determined by chromatin immunoprecipitation (ChIP). Gene expression data were derived from 81 postmenopausal women with ER+ BC pre-treatment and at two-weeks post-treatment with single agent anastrozole in a neoadjuvant trial. RESULTS: The PDGF/Abl canonical pathway was significantly elevated as early as one week post E-deprivation (P = 1.94 E-04) and this became the top adaptive pathway at the point of proliferative recovery (P = 1.15 E-07). Both PDGFRß and Abl protein levels were elevated in the LTED cells compared to wild type (wt)-MCF7 cells. The PDGF/Abl tyrosine kinase inhibitor nilotinib, suppressed proliferation in LTED cells in the presence or absence of E. Nilotinib also suppressed ER-mediated transcription by destabilizing the ER and reducing recruitment of amplified in breast cancer-1 (AIB1) and the CREB binding protein (CBP) to the promoter of the E-responsive gene GREB1. High PDGFRß in primary ER+ breast cancer of 81 patients prior to neoadjuvant treatment with an AI was associated with poorer antiproliferative response. Additionally PDGFRß expression increased after two weeks of AI therapy (1.25 fold, P = 0.003). CONCLUSIONS: These preclinical and clinical data indicate that the PDGF/Abl signaling pathway merits clinical evaluation as a therapeutic target with endocrine therapy in ER+ breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Estrogênios/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Anastrozol , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Terapia Neoadjuvante , Proteínas de Neoplasias/genética , Nitrilas/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/genética , Pirimidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Triazóis/farmacologia
10.
Breast Cancer Res ; 14(5): R132, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23075476

RESUMO

INTRODUCTION: Strategies to improve the efficacy of endocrine agents in breast cancer (BC) therapy and to delay the onset of resistance include concomitant targeting of the estrogen receptor alpha (ER) and the mammalian target of rapamycin complex 1 (mTORC1), which regulate cell-cycle progression and are supported by recent clinical results. METHODS: BC cell lines expressing aromatase (AROM) and modeling endocrine-sensitive (MCF7-AROM1) and human epidermal growth factor receptor 2 (HER2)-dependent de novo resistant disease (BT474-AROM3) and long-term estrogen-deprived (LTED) MCF7 cells that had acquired resistance associated with HER2 overexpression were treated in vitro and as subcutaneous xenografts with everolimus (RAD001-mTORC1 inhibitor), in combination with tamoxifen or letrozole. End points included proliferation, cell-cycle arrest, cell signaling, and effects on ER-mediated transactivation. RESULTS: Everolimus caused a concentration-dependent decrease in proliferation in all cell lines, which was associated with reductions in S6 phosphorylation. Everolimus plus letrozole or tamoxifen enhanced the antiproliferative effect and G1-accumulation compared with monotherapy, as well as increased phosphorylation (Ser10) and nuclear accumulation of p27 and pronounced dephosphorylation of Rb. Sensitivity was greatest to everolimus in the LTED cells but was reduced by added estrogen. Increased pAKT occurred in all circumstances with everolimus and, in the BT474 and LTED cells, was associated with increased pHER3. Decreased ER transactivation suggested that the effectiveness of everolimus might be partly related to interrupting cross-talk between growth-factor signaling and ER. In MCF7-AROM1 xenografts, letrozole plus everolimus showed a trend toward enhanced tumor regression, versus the single agents. In BT474-AROM3 xenografts, everolimus alone was equally effective at reducing tumor volume as were the combination therapies. CONCLUSIONS: The results provide mechanistic support for recent positive clinical data on the combination of everolimus and endocrine therapy, as well as data on potential routes of escape via enhanced HER2/3 signaling. This merits investigation for further improvements in treatment efficacy.


Assuntos
Antineoplásicos Hormonais/farmacologia , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sirolimo/análogos & derivados , Tamoxifeno/farmacologia , Triazóis/farmacologia , Animais , Antineoplásicos Hormonais/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Everolimo , Feminino , Humanos , Letrozol , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Nitrilas/administração & dosagem , Fosforilação , Inibidores de Proteínas Quinases/administração & dosagem , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-3/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Tamoxifeno/administração & dosagem , Triazóis/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
11.
NPJ Breast Cancer ; 8(1): 125, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446866

RESUMO

The selective oestrogen receptor (ER) degrader (SERD), fulvestrant, is limited in its use for the treatment of breast cancer (BC) by its poor oral bioavailability. Comparison of the orally bioavailable investigational SERD elacestrant, versus fulvestrant, demonstrates both drugs impact tumour growth of ER+ patient-derived xenograft models harbouring several ESR1 mutations but that elacestrant is active after acquired resistance to fulvestrant. In cell line models of endocrine sensitive and resistant breast cancer both drugs impact the ER-cistrome, ER-interactome and transcription of oestrogen-regulated genes similarly, confirming the anti-oestrogenic activity of elacestrant. The addition of elacestrant to CDK4/6 inhibitors enhances the antiproliferative effect compared to monotherapy. Furthermore, elacestrant inhibits the growth of palbociclib-resistant cells. Lastly, resistance to elacestrant involves Type-I and Type-II receptor tyrosine kinases which are amenable to therapeutic targeting. Our data support the wider clinical testing of elacestrant.

12.
Cancer Res ; 81(4): 847-859, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33509944

RESUMO

Triple-negative breast cancers (TNBC) are resistant to standard-of-care chemotherapy and lack known targetable driver gene alterations. Identification of novel drivers could aid the discovery of new treatment strategies for this hard-to-treat patient population, yet studies using high-throughput and accurate models to define the functions of driver genes in TNBC to date have been limited. Here, we employed unbiased functional genomics screening of the 200 most frequently mutated genes in breast cancer, using spheroid cultures to model in vivo-like conditions, and identified the histone acetyltransferase CREBBP as a novel tumor suppressor in TNBC. CREBBP protein expression in patient tumor samples was absent in 8% of TNBCs and at a high frequency in other tumors, including squamous lung cancer, where CREBBP-inactivating mutations are common. In TNBC, CREBBP alterations were associated with higher genomic heterogeneity and poorer patient survival and resulted in upregulation and dependency on a FOXM1 proliferative program. Targeting FOXM1-driven proliferation indirectly with clinical CDK4/6 inhibitors (CDK4/6i) selectively impaired growth in spheroids, cell line xenografts, and patient-derived models from multiple tumor types with CREBBP mutations or loss of protein expression. In conclusion, we have identified CREBBP as a novel driver in aggressive TNBC and identified an associated genetic vulnerability in tumor cells with alterations in CREBBP and provide a preclinical rationale for assessing CREBBP alterations as a biomarker of CDK4/6i response in a new patient population. SIGNIFICANCE: This study demonstrates that CREBBP genomic alterations drive aggressive TNBC, lung cancer, and lymphomas and may be selectively treated with clinical CDK4/6 inhibitors.


Assuntos
Proteína de Ligação a CREB/fisiologia , Carcinogênese/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Proteína de Ligação a CREB/genética , Proliferação de Células/genética , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Genômica/métodos , Células HCT116 , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Terapia de Alvo Molecular , Mutação , Invasividade Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Oncogene ; 39(3): 651-663, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31530935

RESUMO

The CDK7 inhibitors (CDK7i) ICEC0942 and THZ1, are promising new cancer therapeutics. Resistance to targeted drugs frequently compromises cancer treatment. We sought to identify mechanisms by which cancer cells may become resistant to CDK7i. Resistant lines were established through continuous drug selection. ABC-transporter copy number, expression and activity were examined using real-time PCR, immunoblotting and flow cytometry. Drug responses were measured using growth assays. ABCB1 was upregulated in ICEC0942-resistant cells and there was cross-resistance to THZ1. THZ1-resistant cells upregulated ABCG2 but remained sensitive to ICEC0942. Drug resistance in both cell lines was reversible upon inhibition of ABC-transporters. CDK7i response was altered in adriamycin- and mitoxantrone-resistant cell lines demonstrating ABC-transporter upregulation. ABCB1 expression correlated with ICEC0942 and THZ1 response, and ABCG2 expression with THZ2 response, in a panel of cancer cell lines. We have identified ABCB1 upregulation as a common mechanism of resistance to ICEC0942 and THZ1, and confirmed that ABCG2 upregulation is a mechanism of resistance to THZ1. The identification of potential mechanisms of CDK7i resistance and differences in susceptibility of ICEC0942 and THZ1 to ABC-transporters, may help guide their future clinical use.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Seleção de Pacientes , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , RNA Interferente Pequeno/metabolismo , Regulação para Cima/efeitos dos fármacos , Quinase Ativadora de Quinase Dependente de Ciclina
14.
Oncogene ; 39(25): 4781-4797, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307447

RESUMO

Combination of CDK4/6 inhibitors and endocrine therapy improves clinical outcome in advanced oestrogen receptor (ER)-positive breast cancer, however relapse is inevitable. Here, we show in model systems that other than loss of RB1 few gene-copy number (CN) alterations are associated with irreversible-resistance to endocrine therapy and subsequent secondary resistance to palbociclib. Resistance to palbociclib occurred as a result of tumour cell re-wiring leading to increased expression of EGFR, MAPK, CDK4, CDK2, CDK7, CCNE1 and CCNE2. Resistance altered the ER genome wide-binding pattern, leading to decreased expression of 'classical' oestrogen-regulated genes and was accompanied by reduced sensitivity to fulvestrant and tamoxifen. Persistent CDK4 blockade decreased phosphorylation of tuberous sclerosis complex 2 (TSC2) enhancing EGFR signalling, leading to the re-wiring of ER. Kinome-knockdown confirmed dependency on ERBB-signalling and G2/M-checkpoint proteins such as WEE1, together with the cell cycle master regulator, CDK7. Noteworthy, sensitivity to CDK7 inhibition was associated with loss of ER and RB1 CN. Overall, we show that resistance to CDK4/6 inhibitors is dependent on kinase re-wiring and the redeployment of signalling cascades previously associated with endocrine resistance and highlights new therapeutic networks that can be exploited upon relapse after CDK4/6 inhibition.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Receptores de Estrogênio/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fulvestranto/administração & dosagem , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Interferência de RNA , Receptores de Estrogênio/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Tamoxifeno/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
15.
J Mol Diagn ; 22(1): 111-121, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669227

RESUMO

Mutations in the ligand-binding domain (LBD) of the ESR1 gene result in resistance to estrogen deprivation therapy (EDT) in breast cancer. Their detection might enable optimization of therapy strategies. However, the predictive utility of the primary tumor (PT) is limited, and obtaining serial biopsies of metastatic lesions is challenging. To underline their application as a liquid biopsy, single circulating tumor cells (CTCs) were analyzed with a next-generation sequencing approach for the ESR1 coding region. CTCs from 46 metastatic luminal breast cancer patients were enriched using CellSearch system and isolated by micromanipulation. Their genomic DNA was amplified and the ESR1 gene was sequenced. Furthermore, tissue samples from corresponding PTs and/or metastatic lesions were investigated. ESR1 mutations were detected in 12 patients-exclusively in patients treated with EDT (P = 0.048). In seven cases mutations were located in the hotspot regions in the LBD. Six novel mutations were identified. ESR1 mutations were absent in PT tissue samples and were detected only in metastases obtained after CTC characterization. Single-cell CTC analysis for ESR1 mutations could be of clinical value to identify patients who progress under EDT and therefore benefit from an early switch to an alternative endocrine therapy or other treatment regimens. Furthermore, our data indicate that mutations outside the LBD's hotspot regions might also contribute to resistance to EDT.


Assuntos
Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Mutação , Células Neoplásicas Circulantes , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Estudos de Coortes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , Pessoa de Meia-Idade , Análise de Célula Única
16.
Nat Commun ; 11(1): 4053, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792481

RESUMO

A significant proportion of patients with oestrogen receptor (ER) positive breast cancers (BC) develop resistance to endocrine treatments (ET) and relapse with metastatic disease. Here we perform whole exome sequencing and gene expression analysis of matched primary breast tumours and bone metastasis-derived patient-derived xenografts (PDX). Transcriptomic analyses reveal enrichment of the G2/M checkpoint and up-regulation of Polo-like kinase 1 (PLK1) in PDX. PLK1 inhibition results in tumour shrinkage in highly proliferating CCND1-driven PDX, including different RB-positive PDX with acquired palbociclib resistance. Mechanistic studies in endocrine resistant cell lines, suggest an ER-independent function of PLK1 in regulating cell proliferation. Finally, in two independent clinical cohorts of ER positive BC, we find a strong association between high expression of PLK1 and a shorter metastases-free survival and poor response to anastrozole. In conclusion, our findings support clinical development of PLK1 inhibitors in patients with advanced CCND1-driven BC, including patients progressing on palbociclib treatment.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina D1/metabolismo , Sequenciamento do Exoma/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Ciclina D1/genética , Variações do Número de Cópias de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Nus , Piperazinas/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Pteridinas/uso terapêutico , Piridinas/uso terapêutico , Quinase 1 Polo-Like
17.
Clin Cancer Res ; 14(9): 2656-63, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18451229

RESUMO

PURPOSE: Vascular endothelial growth factor (VEGF) is a key angiogenic factor mediating neovascularization. Soluble VEGF receptor 1 (sVEGFR-1) is an intrinsic negative counterpart of VEGF signaling and the ratio of sVEGFR-1 to VEGF has been shown to be a prognostic factor. Estrogen-bound estrogen receptor enhances VEGF expression, providing a common link between these signaling pathways that may be targeted by endocrine therapy. We investigated the effects of anastrozole and tamoxifen over time on serum VEGF and sVEGFR-1. EXPERIMENTAL DESIGN: The Immediate Preoperative Anastrozole, Tamoxifen, or Combined with Tamoxifen (IMPACT) trial compared the preoperative use of anastrozole with tamoxifen in postmenopausal women with estrogen receptor-positive primary operable breast cancer over 12 weeks. Circulating VEGF and sVEGFR-1 were measured by ELISA in 106 patients treated with anastrozole or tamoxifen alone at baseline and after 2 and 12 weeks of treatment. RESULTS: The increase in serum VEGF from baseline to 12 weeks was significantly different between anastrozole and tamoxifen (anastrozole versus tamoxifen, 6% versus 38%; P = 0.047). There was a significant increase in sVEGFR-1 levels after 12 weeks of anastrozole (P = 0.037). The sVEGFR-1/VEGF ratio significantly decreased in the tamoxifen arm (P = 0.013) and the change in sVEGFR-1/VEGF ratio from baseline to 12 weeks was significantly different between anastrozole and tamoxifen (anastrozole versus tamoxifen, 24% increase versus 34% decrease; P = 0.013). CONCLUSIONS: Treatment with anastrozole and tamoxifen resulted in differential effects on serum angiogenic markers. This may be related to the relative effectiveness of the treatments. These data provide further support for cross talk between estrogen receptor and VEGF.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Nitrilas/uso terapêutico , Tamoxifeno/uso terapêutico , Triazóis/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Idoso , Idoso de 80 Anos ou mais , Anastrozol , Antineoplásicos Hormonais/administração & dosagem , Neoplasias da Mama/sangue , Método Duplo-Cego , Antagonistas de Estrogênios/administração & dosagem , Antagonistas de Estrogênios/uso terapêutico , Feminino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Nitrilas/administração & dosagem , Tamoxifeno/administração & dosagem , Triazóis/administração & dosagem
18.
Cell Rep ; 29(4): 889-903.e10, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31644911

RESUMO

Notwithstanding the positive clinical impact of endocrine therapies in estrogen receptor-alpha (ERα)-positive breast cancer, de novo and acquired resistance limits the therapeutic lifespan of existing drugs. Taking the position that resistance is nearly inevitable, we undertook a study to identify and exploit targetable vulnerabilities that were manifest in endocrine therapy-resistant disease. Using cellular and mouse models of endocrine therapy-sensitive and endocrine therapy-resistant breast cancer, together with contemporary discovery platforms, we identified a targetable pathway that is composed of the transcription factors FOXA1 and GRHL2, a coregulated target gene, the membrane receptor LYPD3, and the LYPD3 ligand, AGR2. Inhibition of the activity of this pathway using blocking antibodies directed against LYPD3 or AGR2 inhibits the growth of endocrine therapy-resistant tumors in mice, providing the rationale for near-term clinical development of humanized antibodies directed against these proteins.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/genética , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Camundongos , Mucoproteínas/imunologia , Mucoproteínas/metabolismo , Proteínas Oncogênicas/imunologia , Proteínas Oncogênicas/metabolismo
19.
Endocr Relat Cancer ; 15(4): 985-1002, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18824559

RESUMO

Acquired resistance to endocrine therapies remains a major clinical obstacle in hormone-sensitive breast tumors. We used an MCF-7 breast tumor cell line (Tam(R)-1) resistant to tamoxifen to investigate this mechanism. We demonstrate that Tam(R)-1 express elevated levels of phosphorylated AKT and MAPK3/1-activated RPS6KA2 compared with the parental MCF-7 cell line (MCF-7). There was no change in the level of total ESR between the two cell lines; however, the Tam(R)-1 cells had increased phosphorylation of ESR1 ser(167). SiRNA blockade of AKT or MAPK3/1 had little effect on ESR1 ser(167) phosphorylation, but a combination of the two siRNAs abrogated this. Co-localization studies revealed an association between ERBB2 and ESR1 in the Tam(R)-1 but not MCF-7 cells. ESR1 was redistributed to extranuclear sites in Tam(R)-1 and was less transcriptionally competent compared with MCF-7 suggesting that nuclear ESR1 activity was suppressed in Tam(R)-1. Tamoxifen resistance in the Tam(R)-1 cells could be partially overcome by the ERBB2 inhibitor AG825 in combination with tamoxifen, and this was associated with re-localization of ESR1 to the nucleus. These data demonstrate that tamoxifen-resistant cells have the ability to switch between ERBB2 or ESR1 pathways promoting cell growth and that pharmacological inhibition of ERBB2 may be a therapeutic strategy for overcoming tamoxifen resistance.


Assuntos
Antineoplásicos Hormonais/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Tamoxifeno/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Imunoprecipitação da Cromatina , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Moduladores de Receptor Estrogênico/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Fulvestranto , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Receptor ErbB-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos , Células Tumorais Cultivadas/efeitos dos fármacos , Proteína de Morte Celular Associada a bcl/metabolismo
20.
Mol Cancer Ther ; 6(9): 2458-67, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17876043

RESUMO

Cross-talk between receptor tyrosine kinases and estrogen receptor is at least partly responsible for the development of acquired resistance to endocrine therapies. Hence, targeting receptor tyrosine kinases and their downstream partners with inhibitors/antagonists may reverse this resistance. Although ras mutations are rare in breast cancer (2%), aberrant function of Ras signal transduction pathways is common. We therefore investigated the efficacy of the farnesyltransferase inhibitor (FTI) R115777 (tipifarnib) in combination with tamoxifen in MCF-7 human breast cancer models both in vitro and in vivo. There was a synergistic antiproliferative interaction between R115777 and 4-hydroxy-tamoxifen in vitro as calculated by median effect analysis. The combination resulted in a significantly greater G(1) arrest than either drug alone and this was associated with marked inhibition of cyclin D1 and induction of the cell cycle inhibitor p27(kip1). Combining R115777 with either tamoxifen or estrogen withdrawal in vivo produced a significantly greater inhibition of tumor growth and lower xenograft cell proliferation than either therapy alone. These results suggest that the combination of this FTI with endocrine therapy may be of therapeutic benefit in the treatment of breast cancer. Enhanced G1 arrest due to modulation of cell cycle regulatory proteins may be the underlying mechanism for the positive interaction between FTIs and tamoxifen.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Farnesiltranstransferase/antagonistas & inibidores , Fase G1/efeitos dos fármacos , Quinolonas/farmacologia , Tamoxifeno/análogos & derivados , Animais , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/patologia , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Quimioterapia Combinada , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Nus , Receptores de Estrogênio/metabolismo , Tamoxifeno/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA