Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 234(4): 1521-1533, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218008

RESUMO

Revealing the contributions of genes to plant phenotype is frequently challenging because loss-of-function effects may be subtle or masked by varying degrees of genetic redundancy. Such effects can potentially be detected by measuring plant fitness, which reflects the cumulative effects of genetic changes over the lifetime of a plant. However, fitness is challenging to measure accurately, particularly in species with high fecundity and relatively small propagule sizes such as Arabidopsis thaliana. An image segmentation-based method using the software ImageJ and an object detection-based method using the Faster Region-based Convolutional Neural Network (R-CNN) algorithm were used for measuring two Arabidopsis fitness traits: seed and fruit counts. The segmentation-based method was error-prone (correlation between true and predicted seed counts, r2 = 0.849) because seeds touching each other were undercounted. By contrast, the object detection-based algorithm yielded near perfect seed counts (r2 = 0.9996) and highly accurate fruit counts (r2 = 0.980). Comparing seed counts for wild-type and 12 mutant lines revealed fitness effects for three genes; fruit counts revealed the same effects for two genes. Our study provides analysis pipelines and models to facilitate the investigation of Arabidopsis fitness traits and demonstrates the importance of examining fitness traits when studying gene functions.


Assuntos
Arabidopsis , Algoritmos , Arabidopsis/genética , Redes Neurais de Computação , Fenótipo , Sementes/genética
2.
Plant Cell ; 30(7): 1445-1460, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29743197

RESUMO

The evolution of transcriptional regulatory mechanisms is central to how stress response and tolerance differ between species. However, it remains largely unknown how divergence in cis-regulatory sites and, subsequently, transcription factor (TF) binding specificity contribute to stress-responsive expression divergence, particularly between wild and domesticated species. By profiling wound-responsive gene transcriptomes in wild Solanum pennellii and domesticated S. lycopersicum, we found extensive wound response divergence and identified 493 S. lycopersicum and 278 S. pennellii putative cis-regulatory elements (pCREs) that were predictive of wound-responsive gene expression. Only 24-52% of these wound response pCREs (depending on wound response patterns) were consistently enriched in the putative promoter regions of wound-responsive genes across species. In addition, between these two species, their differences in pCRE site sequences were significantly and positively correlated with differences in wound-responsive gene expression. Furthermore, ∼11-39% of pCREs were specific to only one of the species and likely bound by TFs from different families. These findings indicate substantial regulatory divergence in these two plant species that diverged ∼3-7 million years ago. Our study provides insights into the mechanistic basis of how the transcriptional response to wounding is regulated and, importantly, the contribution of cis-regulatory components to variation in wound-responsive gene expression between a wild and a domesticated plant species.


Assuntos
Solanum lycopersicum/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Biophys J ; 119(9): 1878-1895, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33086045

RESUMO

Light-entrained circadian clocks confer rhythmic dynamics of cellular and molecular activities to animals and plants. These intrinsic clocks allow stable anticipations to light-dark (diel) cycles. Many genes in the model plant Arabidopsis thaliana are regulated by diel cycles via pathways independent of the clock, suggesting that the integration of circadian and light signals is important for the fitness of plants. Previous studies of light-clock signal integrations have focused on moderate phase adjustment of the two signals. However, dynamical features of integrations across a broad range of phases remain elusive. Phosphorylation of ribosomal protein of the small subunit 6 (eS6), a ubiquitous post-translational modification across kingdoms, is influenced by the circadian clock and the light-dark (diel) cycle in an opposite manner. To understand this striking phenomenon and its underlying information processing capabilities, we built a mathematical model for the eS6 phosphorylation (eS6-P) control circuit. We found that the dynamics of eS6-P can be explained by a feedforward circuit with inputs from both circadian and diel cycles. Furthermore, the early day response of this circuit with dual rhythmic inputs is sensitive to the changes in daylength, including both transient and gradual changes observed in realistic light intervals across a year, because of weather and seasons. By analyzing published gene expression data, we found that the dynamics produced by the eS6-P control circuit can be observed in the expression profiles of a large number of genes. Our work provides mechanistic insights into the complex dynamics of a ribosomal protein, and it proposes a previously underappreciated function of the circadian clock, which not only prepares organisms for normal diel cycles but also helps to detect both transient and seasonal changes with a predictive power.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Fotoperíodo
4.
BMC Genomics ; 21(1): 159, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054475

RESUMO

BACKGROUND: Gene expression is regulated by DNA-binding transcription factors (TFs). Together with their target genes, these factors and their interactions collectively form a gene regulatory network (GRN), which is responsible for producing patterns of transcription, including cyclical processes such as genome replication and cell division. However, identifying how this network regulates the timing of these patterns, including important interactions and regulatory motifs, remains a challenging task. RESULTS: We employed four in vivo and in vitro regulatory data sets to investigate the regulatory basis of expression timing and phase-specific patterns cell-cycle expression in Saccharomyces cerevisiae. Specifically, we considered interactions based on direct binding between TF and target gene, indirect effects of TF deletion on gene expression, and computational inference. We found that the source of regulatory information significantly impacts the accuracy and completeness of recovering known cell-cycle expressed genes. The best approach involved combining TF-target and TF-TF interactions features from multiple datasets in a single model. In addition, TFs important to multiple phases of cell-cycle expression also have the greatest impact on individual phases. Important TFs regulating a cell-cycle phase also tend to form modules in the GRN, including two sub-modules composed entirely of unannotated cell-cycle regulators (STE12-TEC1 and RAP1-HAP1-MSN4). CONCLUSION: Our findings illustrate the importance of integrating both multiple omics data and regulatory motifs in order to understand the significance regulatory interactions involved in timing gene expression. This integrated approached allowed us to recover both known cell-cycles interactions and the overall pattern of phase-specific expression across the cell-cycle better than any single data set. Likewise, by looking at regulatory motifs in the form of TF-TF interactions, we identified sets of TFs whose co-regulation of target genes was important for cell-cycle expression, even when regulation by individual TFs was not. Overall, this demonstrates the power of integrating multiple data sets and models of interaction in order to understand the regulatory basis of established biological processes and their associated gene regulatory networks.


Assuntos
Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genes cdc , Genômica , Saccharomyces cerevisiae/genética , Biologia Computacional/métodos , Genômica/métodos , Aprendizado de Máquina , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
5.
BMC Evol Biol ; 19(1): 77, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30866803

RESUMO

BACKGROUND: Transcription factors (TFs) play a key role in regulating plant development and response to environmental stimuli. While most genes revert to single copy after whole genome duplication (WGD) event, transcription factors are retained at a significantly higher rate. Little is known about how TF duplicates have diverged in their expression and regulation, the answer to which may contribute to a better understanding of the elevated retention rate among TFs. RESULTS: Here we assessed what features may explain differences in the retention of TF duplicates and other genes using Arabidopsis thaliana as a model. We integrated 34 expression, sequence, and conservation features to build a linear model for predicting the extent of duplicate retention following WGD events among TFs and 19 groups of genes with other functions. We found that TFs was the least well predicted, demonstrating the features of TFs are substantially deviated from duplicate genes in other function groups. Consistent with this, the evolution of TF expression patterns and cis-regulatory cites favors the partitioning of ancestral states among the resulting duplicates: one "ancestral" TF duplicate retains most ancestral expression and cis-regulatory sites, while the "non-ancestral" duplicate is enriched for novel regulatory sites. By modeling the retention of ancestral expression and cis-regulatory states in duplicate pairs using a system of differential equations, we found that TF duplicate pairs in a partitioned state are preferentially maintained. CONCLUSIONS: These TF duplicates with asymmetrically partitioned ancestral states are likely maintained because one copy retains ancestral functions while the other, at least in some cases, acquires novel cis-regulatory sites that may be important for novel, adaptive traits.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Duplicação Gênica , Genoma de Planta , Fatores de Transcrição/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes Duplicados , Modelos Lineares , Razão de Chances
6.
Mol Biol Evol ; 35(6): 1422-1436, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29554332

RESUMO

With advances in transcript profiling, the presence of transcriptional activities in intergenic regions has been well established. However, whether intergenic expression reflects transcriptional noise or activity of novel genes remains unclear. We identified intergenic transcribed regions (ITRs) in 15 diverse flowering plant species and found that the amount of intergenic expression correlates with genome size, a pattern that could be expected if intergenic expression is largely nonfunctional. To further assess the functionality of ITRs, we first built machine learning models using Arabidopsis thaliana as a model that accurately distinguish functional sequences (benchmark protein-coding and RNA genes) and likely nonfunctional ones (pseudogenes and unexpressed intergenic regions) by integrating 93 biochemical, evolutionary, and sequence-structure features. Next, by applying the models genome-wide, we found that 4,427 ITRs (38%) and 796 annotated ncRNAs (44%) had features significantly similar to benchmark protein-coding or RNA genes and thus were likely parts of functional genes. Approximately 60% of ITRs and ncRNAs were more similar to nonfunctional sequences and were likely transcriptional noise. The predictive framework established here provides not only a comprehensive look at how functional, genic sequences are distinct from likely nonfunctional ones, but also a new way to differentiate novel genes from genomic regions with noisy transcriptional activities.


Assuntos
DNA Intergênico , Tamanho do Genoma , Genoma de Planta , Modelos Genéticos , RNA não Traduzido , Metilação de DNA , Aprendizado de Máquina , Magnoliopsida , Fenótipo , Transcrição Gênica
7.
Plant Physiol ; 171(4): 2294-316, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27288366

RESUMO

Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication.


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma de Planta/genética , Plantas/genética , Filogenia
8.
Plant J ; 83(6): 1097-113, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26216534

RESUMO

Nannochloropsis oceanica CCMP1779 is a marine unicellular stramenopile and an emerging reference species for basic research on oleogenic microalgae with biotechnological relevance. We investigated its physiology and transcriptome under light/dark cycles. We observed oscillations in lipid content and a predominance of cell division in the first half of the dark phase. Globally, more than 60% of the genes cycled in N. oceanica CCMP1779, with gene expression peaking at different times of the day. Interestingly, the phase of expression of genes involved in certain biological processes was conserved across photosynthetic lineages. Furthermore, in agreement with our physiological studies we found the processes of lipid metabolism and cell division enriched in cycling genes. For example, there was tight coordination of genes involved in the lower part of glycolysis, fatty acid synthesis and lipid production at dawn preceding lipid accumulation during the day. Our results suggest that diel lipid storage plays a key role for N. oceanica CCMP1779 growth under natural conditions making this alga a promising model to gain a basic mechanistic understanding of triacylglycerol production in photosynthetic cells. Our data will help the formulation of new hypotheses on the role of cyclic gene expression in cell growth and metabolism in Nannochloropsis.


Assuntos
Regulação da Expressão Gênica , Estramenópilas/fisiologia , Acetilcoenzima A/metabolismo , Carbono/metabolismo , Ciclo Celular/genética , Ciclo do Ácido Cítrico/fisiologia , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Glicólise , Metabolismo dos Lipídeos/genética , Fotoperíodo , Estramenópilas/genética , Estramenópilas/metabolismo
9.
Plant Physiol ; 168(4): 1717-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26103993

RESUMO

Functional divergence between duplicate transcription factors (TFs) has been linked to critical events in the evolution of land plants and can result from changes in patterns of expression, binding site divergence, and/or interactions with other proteins. Although plant TFs tend to be retained post polyploidization, many are lost within tens to hundreds of million years. Thus, it can be hypothesized that some TFs in plant genomes are in the process of becoming pseudogenes. Here, we use a pair of salt tolerance-conferring transcription factors, DWARF AND DELAYED FLOWERING1 (DDF1) and DDF2, that duplicated through paleopolyploidy 50 to 65 million years ago, as examples to illustrate potential mechanisms leading to duplicate retention and loss. We found that the expression patterns of Arabidopsis thaliana (At)DDF1 and AtDDF2 have diverged in a highly asymmetric manner, and AtDDF2 has lost most inferred ancestral stress responses. Consistent with promoter disablement, the AtDDF2 promoter has fewer predicted cis-elements and a methylated repetitive element. Through comparisons of AtDDF1, AtDDF2, and their Arabidopsis lyrata orthologs, we identified significant differences in binding affinities and binding site preference. In particular, an AtDDF2-specific substitution within the DNA-binding domain significantly reduces binding affinity. Cross-species analyses indicate that both AtDDF1 and AtDDF2 are under selective constraint, but among A. thaliana accessions, AtDDF2 has a higher level of nonsynonymous nucleotide diversity compared with AtDDF1. This may be the result of selection in different environments or may point toward the possibility of ongoing functional decay despite retention for millions of years after gene duplication.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Duplicação Gênica , Fatores de Transcrição/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação/genética , Temperatura Baixa , Evolução Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Variação Genética , Genoma de Planta/genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Raízes de Plantas/genética , Brotos de Planta/genética , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
10.
Plant Physiol ; 167(1): 25-39, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25384563

RESUMO

The large size and relative complexity of many plant genomes make creation, quality control, and dissemination of high-quality gene structure annotations challenging. In response, we have developed MAKER-P, a fast and easy-to-use genome annotation engine for plants. Here, we report the use of MAKER-P to update and revise the maize (Zea mays) B73 RefGen_v3 annotation build (5b+) in less than 3 h using the iPlant Cyberinfrastructure. MAKER-P identified and annotated 4,466 additional, well-supported protein-coding genes not present in the 5b+ annotation build, added additional untranslated regions to 1,393 5b+ gene models, identified 2,647 5b+ gene models that lack any supporting evidence (despite the use of large and diverse evidence data sets), identified 104,215 pseudogene fragments, and created an additional 2,522 noncoding gene annotations. We also describe a method for de novo training of MAKER-P for the annotation of newly sequenced grass genomes. Collectively, these results lead to the 6a maize genome annotation and demonstrate the utility of MAKER-P for rapid annotation, management, and quality control of grasses and other difficult-to-annotate plant genomes.


Assuntos
Genes de Plantas/genética , Genoma de Planta/genética , Anotação de Sequência Molecular/métodos , Zea mays/genética , Bases de Dados Genéticas/normas , Éxons/genética , Íntrons/genética , Modelos Genéticos , Anotação de Sequência Molecular/normas , Pseudogenes/genética , Controle de Qualidade , RNA não Traduzido/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA