Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 341: 118055, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141725

RESUMO

Second-generation bioenergy, a carbon neutral or negative renewable resource, is crucial to achieving India's net-zero emission targets. Crop residues are being targeted as a bioenergy resource as they are otherwise burned on-field, leading to significant pollutant emissions. But estimating their bioenergy potential is problematic because of broad assumptions about their surplus fractions. Here, we use comprehensive surveys and multivariate regression models to estimate the bioenergy potential of surplus crop residues in India. These are with high sub-national and crop disaggregation that can facilitate the development of efficient supply chain mechanisms for its widespread usage. The estimated potential for 2019 of 1313 PJ can increase the present bioenergy installed capacity by 82% but is likely insufficient alone to meet India's bioenergy targets. The shortage of crop residue for bioenergy, combined with the sustainability concerns raised by previous studies, imply a need to reassess the strategy for the use of this resource.


Assuntos
Agricultura , Poluentes Ambientais , Índia , Carbono
2.
Sci Total Environ ; 869: 161753, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690110

RESUMO

Hygroscopicity of atmospheric aerosol primarily depends on the size and chemical composition of the particle and is important for estimating anthropogenic aerosol radiative forcing. There is limited information exists over the Indian region on size segregated aerosol hygroscopicity (κ) in different seasons. This study presents 'κ' as derived from a Humidified Tandem Differential Mobility Analyzer (HTDMA) over a High Altitude Cloud Physics Laboratory (HACPL) in the Western Ghats, India for more than a year (from May 2019 to May 2020). The average hygroscopicity values of aerosol particles of diameters 32, 50, 75, 110, 150, 210 and 260 nm at 90 % RH condition are 0.19, 0.18, 0.16, 0.17, 0.18, 0.20, 0.21 respectively during the entire observation period. κ was observed to decrease with an increase in size in the Aitken mode regime (32-75 nm) and an increase in the accumulation mode (110-260 nm). Seasonal variation of hygroscopicity for a wide range of particle diameters is reported which is highly demanding as there is a change in the air mass flow pattern in each of the seasons. The diurnal cycle of hygroscopicity showed a prominent peak during the midnight to early morning hours followed by a decrease in the forenoon hours and a secondary peak in the afternoon hours. κ is found to be higher in pre-monsoon compared to winter season as Chl is approximately 3 % higher in pre-monsoon and NH4Cl is highly hygroscopic among the assumed chemical composition. Hygroscopicity derived through chemical speciation observations assuming internal and external mixing of aerosols i.e. κinter and κexter are overestimating as compared to κHTDMA. However, the bias between kexter and kHTDMA is relatively lower as external mixing type of aerosol is evident through the growth factor data sets measured by HTDMA. Utilizing the hygroscopicity measurements available for discrete diameters by HTDMA, a parameterization of hygroscopicity with the dry diameter of sub-micron particles is developed.

3.
Sci Rep ; 12(1): 12050, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835974

RESUMO

Tropospheric Biennial Oscillation (TBO) is characterized by a tendency for a relatively stronger monsoon to be followed by a relatively weaker one (positive) or vice-versa (negative). This study examines the distribution of different convective systems occurring during TBO phases over the Indian monsoon region. During negative TBO phase, convection is preferential over the Arabian Sea (AS), whereas during positive TBO phase, it is favoured over the land areas and Bay of Bengal (BoB). The isolated shallow convection (ISC) is dominated over the AS and Indian west coast during negative TBO years. A relatively stable environment (statically) capped with drier mid-troposphere results in abundant ISC over the AS. Broad stratiform rain (BSR) dominates over the central and east coast of India, BoB and Myanmar coast during positive TBO years and wide convective core (WCC) are present along the orographic regions, i.e., Myanmar coast and Western Ghats during negative TBO phase. The anomalous easterlies induced by the upper-ocean temperature gradient interact with the mean monsoon winds during positive TBO to provide pathways for developing BSR echoes. The deep-wide convection (DWC) are higher along the Himalayan foothills during positive TBO years. The moist low-level flow from the AS is trapped by dry mid-level flow from high latitudes, resulting in orographic lifting along the Himalayan foothills and form DWC.

4.
Sci Rep ; 11(1): 14103, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238946

RESUMO

Diurnal variation of convective storms (CSs) during monsoon season and associated physical mechanisms are significantly important for accurate forecast of short-time and extreme precipitation. The diurnal cycle of CSs is investigated using ground-based X-band radar, Tropical Rainfall Measuring Mission Precipitation Radar, and reanalysis data during the summer monsoon (June-September of 2014) over complex mountain terrain of Western Ghats, India. Diurnally, CSs show a bimodal distribution in the coastal areas, but this bimodality became weak along the upslope regions and on the mountain top. The first occurrence mode of CSs is in the afternoon-evening hours, while the second peak is in the early-morning hours. The diurnal cycle's intensity varies with location, such that it reaches maximum in the afternoon-evening hours and early morning on the mountain top and coastal areas, respectively. Two possible mechanisms are proposed for the observed diurnal variation in CSs (a) the radiative cooling effect and (b) the surface wind convergence induced by the interaction between land-sea breeze, local topography and large-scale monsoon winds. It is also observed that the CSs developed on the mountain top during afternoon-evening hours are deeper than those along the coast. The higher moisture in the lower- and mid-troposphere, higher instability and strong upward motion facilitate deeper CSs during afternoon-evening hours.

5.
Sci Rep ; 9(1): 19171, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844084

RESUMO

Assessment of Sea Salt (SS) and Non-Sea Salt (NSS) aerosols in rainwater is important to understand the characterization of marine and continental aerosols and their source pathways. Sea salt quantification based on standard seawater ratios are primarily constrained with high uncertainty with its own limitations. Here, by the novelty of k-mean clustering and Positive Matrix Factorization (PMF) analysis, we segregate the air masses into two distinct clusters (oceanic and continental) during summer monsoon period signifying the complex intermingle of sources that act concomitantly. The rainwater composition during strong south-westerly wind regimes (cluster 2-oceanic) was profoundly linked with high sea salt and dust, whereas north-westerly low wind regimes (cluster 1-continental) showed an increase in SO42- and NO3-. However, SO42- abundance over NO3- in rain-water depicted its importance as a major acidifying ion at the region. The satellite-based observations indicate the presence of mid-tropospheric dust at the top (3-5 km) and marine sea salt at bottom acts as a "sandwich effect" for maritime clouds that leads to elevated Ca2+, Na+, Mg2+, and Cl- in rainwater. This characteristic feature is unique as sea spray generation due to high surface winds and dust aloft is only seen during this period. Furthermore, four source factors (secondary inorganic aerosol, mixed dust & sea salt, biomass burning & fertilizer use, and calcium neutralization) derived from PMF analysis showed contribution from local activities as well as long-range transport as dominant sources for the rainwater species.

6.
Environ Sci Pollut Res Int ; 22(4): 2846-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25217282

RESUMO

A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 µg/m(3), 182.75 ± 114.5 µg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 µg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 µg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated that emission of soot particles may be localized to fossil fuel combustion, whereas wood/biomass burning emission of black carbon is due to transportation from farther distances. Regression analysis between eBCff and CO (r = 0.44) indicated a similar source as vehicular emissions. The very high loading of PM2.5 along with eBC over Delhi suggests that urgent action is needed to mitigate the emissions of carbonaceous aerosol in the northern part of India.


Assuntos
Poluentes Atmosféricos/química , Carbono/análise , Monitoramento Ambiental/estatística & dados numéricos , Combustíveis Fósseis/análise , Fuligem/análise , Emissões de Veículos/análise , Madeira/química , Absorção Fisico-Química , Aerossóis , Biomassa , Monóxido de Carbono/análise , Monitoramento Ambiental/métodos , Índia , Material Particulado/análise , Análise de Regressão , Estações do Ano
7.
Environ Sci Pollut Res Int ; 22(7): 5293-304, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25416502

RESUMO

To understand the boundary layer characteristics and pathways of aerosol-cloud interaction, an Integrated Ground Observational Campaign, concurrent with Cloud Aerosol Interaction and Precipitation Enhancement Experiment, was conducted by the Indian Institute of Tropical Meteorology, Pune, under Ministry of Earth Sciences at Mahabubnagar (a rural environment, which is ~100 km away from an urban city Hyderabad in Andhra Pradesh), during the period of July-November 2011. Collected samples of PM2.5 and PM10 were analyzed for water-soluble ionic species along with organic carbon (OC) and elemental carbon (EC). During study period, the average mass concentrations of PM2.5 and PM10 were about 50(±10) and 69(±14) µg m(-3), respectively, which are significantly higher than the prescribed Indian National Ambient Air Quality Standards values. The chemical species such as sum of anions and cations from measured chemical constituents were contributed to be 31.27 and 38.49% in PM2.5 and 6.35 and 5.65% to the PM10, whereas carbonaceous species contributed ~17.3 and 20.47% for OC and ~3.0 and 3.10% for EC, respectively. The average ratio of PM2.5/PM10 during study period was ~0.73(±0.2), indicating that the dominance of fine size particles. Carbonaceous analysis results showed that the average concentration of OC was 14 and 8.7 µg m(-3), while EC was 2.1 and 1.5 µg m(-3) for PM10 and PM2.5, respectively. The ratios between OC and EC were estimated, which were 6.6 and 5.7 for PM10 and PM2.5, suggesting the presence of secondary organic aerosol. Total carbonaceous aerosol accounts 23% of PM10 in which the contribution of OC is 20% and EC is 3%, while 20% of PM2.5 mass in which the contribution of OC is 17% and EC is 3%. Out of the total aerosols mass, water-soluble constituents contributed an average of 45% in PM10 and 38% in PM2.5 including about 39% anions and 6% cations in PM10, while 31% anions and 7% cations in PM2.5 aerosol mass collectively at study site.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Material Particulado/análise , Material Particulado/química , Carbono , Monitoramento Ambiental , Índia , Tamanho da Partícula
8.
Appl Opt ; 34(21): 4416-25, 1995 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21052276

RESUMO

The scattering properties of aerosols over a tropical urban station, Pune, India, (18° 32' N, 73° 51' E, 559 m above mean sea level), are studied with a bistatic, multiwavelength, continuous-wave, argon-ion lidar. The scattered-intensity profiles (up to 1000 m above ground level) measured at four wavelengths (0.4765, 0.4880, 0.4965, and 0.5145 µm) of the laser during November 1987-March 1990 revealed certain spectral dependence, in conformity with the Mie theory of aerosol particles. Methods for retrieving the bulk as well as the height variation of aerosol-size distribution from the inversion of angular distribution of scattered-light-intensity measurements from a constant altitude and scattered-intensity verticalprofile measurements at different wavelengths are explained. Results obtained from these approaches are presented and compared with results reported by other investigators. The deviations in the results are discussed in relation to the assumptions involved and the terrain-atmospheric conditions at the experimental station. It is found that the aerosol-size-distribution parameter is altitude dependent beside its dependence on refractive index and wavelength of incident radiation. The results of the study suggest that the information content from bistatic, multiwavelength laser scattering measurements is useful for inferring aerosol-size distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA