Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 30(3-4): 265-276, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33693650

RESUMO

Mutations in the WFS1 gene, encoding wolframin (WFS1), cause endoplasmic reticulum (ER) stress and are associated with a rare autosomal-recessive disorder known as Wolfram syndrome (WS). WS is clinically characterized by childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus and neurological signs. We identified two novel WFS1 mutations in a patient with WS, namely, c.316-1G > A (in intron 3) and c.757A > T (in exon 7). Both mutations, located in the N-terminal region of the protein, were predicted to generate a truncated and inactive form of WFS1. We found that although the WFS1 protein was not expressed in peripheral blood mononuclear cells (PBMCs) of the proband, no constitutive ER stress activation could be detected in those cells. In contrast, WS proband's PBMCs produced very high levels of proinflammatory cytokines (i.e. TNF-α, IL-1ß, and IL-6) in the absence of any stimulus. WFS1 silencing in PBMCs from control subjects by means of small RNA interference also induced a pronounced proinflammatory cytokine profile. The same cytokines were also significantly higher in sera from the WS patient as compared to matched healthy controls. Moreover, the chronic inflammatory state was associated with a dominance of proinflammatory T helper 17 (Th17)-type cells over regulatory T (Treg) lymphocytes in the WS PBMCs. The identification of a state of systemic chronic inflammation associated with WFS1 deficiency may pave the way to innovative and personalized therapeutic interventions in WS.


Assuntos
Inflamação , Leucócitos Mononucleares/metabolismo , Proteínas de Membrana/genética , Mutação , Síndrome de Wolfram/metabolismo , Criança , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Leucócitos Mononucleares/imunologia , Análise de Sequência de DNA , Síndrome de Wolfram/genética , Síndrome de Wolfram/imunologia , Síndrome de Wolfram/fisiopatologia
2.
Proc Natl Acad Sci U S A ; 117(7): 3848-3857, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32024760

RESUMO

l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.


Assuntos
Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Regulação Alostérica , Sítio Alostérico , Animais , Biocatálise , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos Knockout , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Serotonina/análogos & derivados , Serotonina/química , Serotonina/metabolismo , Triptofano/metabolismo
3.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003426

RESUMO

Indoleamine 2,3-dioxygenase 2 (IDO2) is a paralog of Indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan-degrading enzyme producing immunomodulatory molecules. However, the two proteins are unlikely to carry out the same functions. IDO2 shows little or no tryptophan catabolic activity and exerts contrasting immunomodulatory roles in a context-dependent manner in cancer and autoimmune diseases. The recently described potential non-enzymatic activity of IDO2 has suggested its possible involvement in alternative pathways, resulting in either pro- or anti-inflammatory effects in different models. In a previous study on non-small cell lung cancer (NSCLC) tissues, we found that IDO2 expression revealed at the plasma membrane level of tumor cells was significantly associated with poor prognosis. In this study, the A549 human cell line, basally expressing IDO2, was used as an in vitro model of human lung adenocarcinoma to gain more insights into a possible alternative function of IDO2 different from the catalytic one. In these cells, immunocytochemistry and isopycnic sucrose gradient analyses confirmed the IDO2 protein localization in the cell membrane compartment, and the immunoprecipitation of tyrosine-phosphorylated proteins revealed that kinase activities can target IDO2. The different localization from the cytosolic one and the phosphorylation state are the first indications for the signaling function of IDO2, suggesting that the IDO2 non-enzymatic role in cancer cells is worthy of deeper understanding.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Fosforilação , Triptofano/metabolismo
4.
EMBO Rep ; 21(12): e49756, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33159421

RESUMO

Knowledge of a protein's spatial dynamics at the subcellular level is key to understanding its function(s), interactions, and associated intracellular events. Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic enzyme that controls immune responses via tryptophan metabolism, mainly through its enzymic activity. When phosphorylated, however, IDO1 acts as a signaling molecule in plasmacytoid dendritic cells (pDCs), thus activating genomic effects, ultimately leading to long-lasting immunosuppression. Whether the two activities-namely, the catalytic and signaling functions-are spatially segregated has been unclear. We found that, under conditions favoring signaling rather than catabolic events, IDO1 shifts from the cytosol to early endosomes. The event requires interaction with class IA phosphoinositide 3-kinases (PI3Ks), which become activated, resulting in full expression of the immunoregulatory phenotype in vivo in pDCs as resulting from IDO1-dependent signaling events. Thus, IDO1's spatial dynamics meet the needs for short-acting as well as durable mechanisms of immune suppression, both under acute and chronic inflammatory conditions. These data expand the theoretical basis for an IDO1-centered therapy in inflammation and autoimmunity.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Fosfatidilinositol 3-Quinases , Células Dendríticas/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais
5.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065885

RESUMO

Genetic engineering of plants has turned out to be an attractive approach to produce various secondary metabolites. Here, we attempted to produce kynurenine, a health-promoting metabolite, in plants of Nicotiana tabacum (tobacco) transformed by Agrobacterium tumefaciens with the gene, coding for human indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme responsible for the kynurenine production because of tryptophan degradation. The presence of IDO1 gene in transgenic plants was confirmed by PCR, but the protein failed to be detected. To confer higher stability to the heterologous human IDO1 protein and to provide a more sensitive method to detect the protein of interest, we cloned a gene construct coding for IDO1-GFP. Analysis of transiently transfected tobacco protoplasts demonstrated that the IDO1-GFP gene led to the expression of a detectable protein and to the production of kynurenine in the protoplast medium. Interestingly, the intracellular localisation of human IDO1 in plant cells is similar to that found in mammal cells, mainly in cytosol, but in early endosomes as well. To the best of our knowledge, this is the first report on the expression of human IDO1 enzyme capable of secreting kynurenines in plant cells.


Assuntos
Agrobacterium tumefaciens/fisiologia , Proteínas de Fluorescência Verde/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/metabolismo , Nicotiana/microbiologia , Agrobacterium tumefaciens/genética , Clonagem Molecular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Plasmídeos/genética , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transformação Bacteriana
6.
J Cell Mol Med ; 23(5): 3757-3761, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30793469

RESUMO

The cytokine interleukin IL-35 is known to exert strong immunosuppressive functions. Indoleamine 2,3-dioxygenase 1 (IDO1) and Arginase 1 (Arg1) are metabolic enzymes that, expressed by dendritic cells (DCs), contribute to immunoregulation. Here, we explored any possible link between IL-35 and the activity of those enzymes. We transfected a single chain IL-35Ig gene construct in murine splenic DCs (DC35 ) and assessed any IDO1 and Arg1 activities as resulting from ectopic IL-35Ig expression, both in vitro and in vivo. Unlike Ido1, Arg1 expression was induced in vitro in DC35 , and it conferred an immunosuppressive phenotype on those cells, as revealed by a delayed-type hypersensitivity assay. Moreover, the in vivo onset of a tolerogenic phenotype in DC35 was associated with the detection of CD25+ CD39+ , rather than Foxp3+ , regulatory T cells. Therefore, Arg1, but not Ido1, expression in DC35 appears to be an early event in IL-35Ig-mediated immunosuppression.


Assuntos
Arginase/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica/imunologia , Interleucinas/imunologia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Apirase/imunologia , Apirase/metabolismo , Arginase/genética , Arginase/metabolismo , Células Dendríticas/metabolismo , Feminino , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Tolerância Imunológica/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
7.
Front Immunol ; 15: 1346686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333210

RESUMO

The tryptophan-degrading enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is a plastic immune checkpoint molecule that potently orchestrates immune responses within the tumor microenvironment (TME). As a heme-containing protein, IDO1 catalyzes the conversion of the essential amino acid tryptophan into immunoactive metabolites, called kynurenines. By depleting tryptophan and enriching the TME with kynurenines, IDO1 catalytic activity shapes an immunosuppressive TME. Accordingly, the inducible or constitutive IDO1 expression in cancer correlates with a negative prognosis for patients, representing one of the critical tumor-escape mechanisms. However, clinically trialed IDO1 catalytic inhibitors disappointed the expected anti-tumor efficacy. Interestingly, the non-enzymatic apo-form of IDO1 is still active as a transducing protein, capable of promoting an immunoregulatory phenotype in dendritic cells (DCs) as well as a pro-tumorigenic behavior in murine melanoma. Moreover, the IDO1 catalytic inhibitor epacadostat can induce a tolerogenic phenotype in plasmacytoid DCs, overcoming the catalytic inhibition of IDO1. Based on this recent evidence, IDO1 plasticity was investigated in the human ovarian cancer cell line, SKOV-3, that constitutively expresses IDO1 in a dynamic balance between the holo- and apo-protein, and thus potentially endowed with a dual function (i.e., enzymatic and non-enzymatic). Besides inhibiting the catalytic activity, epacadostat persistently stabilizes the apo-form of IDO1 protein, favoring its tyrosine-phosphorylation and promoting its association with the phosphatase SHP-2. In SKOV-3 cells, both these early molecular events activate a signaling pathway transduced by IDO1 apo-protein, which is independent of its catalytic activity and contributes to the tumorigenic phenotype of SKOV-3 cells. Overall, our findings unveiled a new mechanism of action of epacadostat on IDO1 target, repositioning the catalytic inhibitor as a stabilizer of the apo-form of IDO1, still capable of transducing a pro-tumorigenic pathway in SKOV-3 tumor. This mechanism could contribute to clarify the lack of effectiveness of epacadostat in clinical trials and shed light on innovative immunotherapeutic strategies to tackle IDO1 target.


Assuntos
Neoplasias Ovarianas , Oximas , Triptofano , Feminino , Humanos , Animais , Camundongos , Triptofano/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Cinurenina/metabolismo , Sulfonamidas , Inibidores Enzimáticos/farmacologia , Carcinogênese , Microambiente Tumoral
8.
Methods Mol Biol ; 2700: 187-198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603182

RESUMO

Toll-like receptors (TLRs) are receptors of the innate immune system specialized in recognizing conserved molecular pattern of pathogens and initiating an appropriate immune response. Along with the recognition of foreign materials, TLRs have also been shown to respond to endogenous molecules, thus mediating the development of autoimmune diseases. Type 1 diabetes (T1D) is a prototypic autoimmune disease in which TLRs play a pathogenic role. We here describe a protocol to study the role of TLRs in the development and progression of T1D by resorting to the nonobese diabetic (NOD) mouse model.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Animais , Camundongos , Modelos Animais de Doenças , Receptores Toll-Like
9.
Front Clin Diabetes Healthc ; 4: 1171091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333802

RESUMO

WFS1 spectrum disorder (WFS1-SD) is a rare monogenic neurodegenerative disorder whose cardinal symptoms are childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus, and neurological signs ranging from mild to severe. The prognosis is poor as most patients die prematurely with severe neurological disabilities such as bulbar dysfunction and organic brain syndrome. Mutation of the WFS1 gene is recognized as the prime mover of the disease and responsible for a dysregulated ER stress signaling, which leads to neuron and pancreatic ß-cell death. There is no currently cure and no treatment that definitively arrests the progression of the disease. GLP-1 receptor agonists appear to be an efficient way to reduce elevated ER stress in vitro and in vivo, and increasing findings suggest they could be effective in delaying the progression of WFS1-SD. Here, we summarize the characteristics of GLP-1 receptor agonists and preclinical and clinical data obtained by testing them in WFS1-SD as a feasible strategy for managing this disease.

10.
Front Immunol ; 14: 1134551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122718

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) is a tryptophan metabolizing enzyme chronically activated in many cancer patients and its expression and activity correlate with a poor prognosis. In fact, it acts as an immune regulator and contributes to tumor-induced immunosuppression by determining tryptophan deprivation and producing immunosuppressive metabolites named kynurenines. These findings made IDO1 an attractive target for cancer immunotherapy and small-molecule inhibitors, such as epacadostat, have been developed to block its enzymatic activity. Although epacadostat was effective in preclinical models and in early phase trials, it gave negative results in a metastatic melanoma randomized phase III study to test the benefit of adding epacadostat to the reference pembrolizumab therapy. However, the reason for the epacadostat failure in this clinical trial has never been understood. Our data suggest that a possible explanation of epacadostat ineffectiveness may rely on the ability of this drug to enhance the other IDO1 immunoregulatory mechanism, involving intracellular signaling function. These findings open up a new perspective for IDO1 inhibitors developed as new anticancer drugs, which should be carefully evaluated for their ability to block not only the catalytic but also the signaling activity of IDO1.


Assuntos
Melanoma , Triptofano , Humanos , Triptofano/metabolismo , Cinurenina/metabolismo , Oximas/farmacologia
11.
Elife ; 122023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387273

RESUMO

Src is a protein tyrosine kinase commonly activated downstream of transmembrane receptors and plays key roles in cell growth, migration, and survival signaling pathways. In conventional dendritic cells (cDCs), Src is involved in the activation of the non-enzymatic functions of indoleamine 2,3-dioxygenase 1 (IDO1), an immunoregulatory molecule endowed with both catalytic activity and signal transducing properties. Prompted by the discovery that the metabolite spermidine confers a tolerogenic phenotype on cDCs that is dependent on both the expression of IDO1 and the activity of Src kinase, we here investigated the spermidine mode of action. We found that spermidine directly binds Src in a previously unknown allosteric site located on the backside of the SH2 domain and thus acts as a positive allosteric modulator of the enzyme. Besides confirming that Src phosphorylates IDO1, here we showed that spermidine promotes the protein-protein interaction of Src with IDO1. Overall, this study may pave the way toward the design of allosteric modulators able to switch on/off the Src-mediated pathways, including those involving the immunoregulatory protein IDO1.


Assuntos
Espermidina , Quinases da Família src , Quinases da Família src/metabolismo , Espermidina/farmacologia , Poliaminas , Fosforilação , Transdução de Sinais , Domínios de Homologia de src
12.
Front Cell Dev Biol ; 10: 895853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573696

RESUMO

In eukaryotes, many proteins contain an N-terminal signal peptide that allows their translocation into the endoplasmic reticulum followed by secretion outside the cell according to the classical secretory system. However, an increasing number of secreted proteins lacking the signal peptide sequence are emerging. These proteins, secreted in several alternative ways collectively known as unconventional protein secretion (UPS) pathways, exert extracellular functions including cell signaling, immune modulation, as well as moonlighting activities different from their well-described intracellular functions. Pathways for UPS include direct transfer across the plasma membrane, secretion from endosomal/multivesicular body-related components, release within plasma membrane-derived microvesicles, or use of elements of autophagy. In this review we describe the mammals and plants UPS pathways identified so far highlighting commonalities and differences.

13.
Pharmaceutics ; 14(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745865

RESUMO

The dried stigmas of Crocus sativus L. (Iridaceae) are traditionally processed to produce saffron, a spice widely used as a food coloring and flavoring agent, which is important in the pharmaceutical and textile dye-producing industries. The labor-intensive by-hand harvesting and the use of only a small amount of each flower cause saffron to be the most expensive spice in the world. Crocus sp. petals are by-products of saffron production and represent an interesting raw material for the preparation of extracts intended for health protection in the perspective of a circular economy. In the present study, ethanolic extract from Crocus sativus L. petals (Crocus sativus L. petal extract, CsPE) was tested on macrophages by in vitro models of inflammation and osteoclastogenesis. The extract was found to be endowed with anti-inflammatory activity, significantly reducing the nitric oxide production and IL-6 release by RAW 264.7 murine cells. Moreover, CsPE demonstrated an anti-osteoclastogenic effect, as revealed by a complete inhibition of tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation and a decreased expression of key osteoclast-related genes. This study, which focuses on the macrophage as the target cell of the bioactive extract from Crocus sativus L. petals, suggests that the petal by-product of saffron processing can usefully be part of a circular economy network aimed at producing an extract that potentially prevents bone disruption.

14.
Nutrients ; 14(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893905

RESUMO

The imbalance in osteoblast (OB)-dependent bone formation in favor of osteoclast (OC)-dependent bone resorption is the main cause of loss of tissue mineral mass during bone remodeling leading to osteoporosis conditions. Thus, the suppression of OC activity together with the improvement in the OB activity has been proposed as an effective therapy for maintaining bone mass during aging. We tested the new dietary product, KYMASIN UP containing standardized Withania somnifera, Silybum marianum and Trigonella foenum-graecum herbal extracts or the single extracts in in vitro models mimicking osteoclastogenesis (i.e., RAW 264.7 cells treated with RANKL, receptor activator of nuclear factor kappa-Β ligand) and OB differentiation (i.e., C2C12 myoblasts treated with BMP2, bone morphogenetic protein 2). We found that the dietary product reduces RANKL-dependent TRAP (tartrate-resistant acid phosphatase)-positive cells (i.e., OCs) formation and TRAP activity, and down-regulates osteoclastogenic markers by reducing Src (non-receptor tyrosine kinase) and p38 MAPK (mitogen-activated protein kinase) activation. Withania somnifera appears as the main extract responsible for the anti-osteoclastogenic effect of the product. Moreover, KYMASIN UP maintains a physiological release of the soluble decoy receptor for RANKL, OPG (osteoprotegerin), in osteoporotic conditions and increases calcium mineralization in C2C12-derived OBs. Interestingly, KYMASIN UP induces differentiation in human primary OB-like cells derived from osteoporotic subjects. Based on our results, KYMASIN UP or Withania somnifera-based dietary supplements might be suggested to reverse the age-related functional decline of bone tissue by re-balancing the activity of OBs and OCs, thus improving the quality of life in the elderly and reducing social and health-care costs.


Assuntos
Produtos Biológicos , Reabsorção Óssea , Suplementos Nutricionais , Osteogênese , Animais , Produtos Biológicos/farmacologia , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Humanos , Camundongos , Osteoblastos/metabolismo , Osteoclastos , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Células RAW 264.7 , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
ChemMedChem ; 16(22): 3439-3450, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34355531

RESUMO

Inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) are considered a promising strategy in cancer immunotherapy as they are able to boost the immune response and to work in synergy with other immunotherapeutic agents. Despite the fact that no IDO1 inhibitor has been approved so far, recent studies have shed light on the additional roles that IDO1 mediates beyond its catalytic activity, conferring new life to the field. Here we present a novel class of compounds originated from a structure-based virtual screening made on IDO1 active site. The starting hit compound is a novel chemotype based on a [1,2,4]triazolo[4,3-a]pyridine scaffold, so far underexploited among the heme binding moieties. Thanks to the rational and in silico-guided design of analogues, an improvement of the potency to sub-micromolar levels has been achieved, with excellent in vitro metabolic stability and exquisite selectivity with respect to other heme-containing enzymes.


Assuntos
Antineoplásicos , Inibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenase , Humanos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
16.
Biomolecules ; 10(9)2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899743

RESUMO

In mammals, amino acid metabolism has evolved to act as a critical regulator of innate and adaptive immune responses. Rheumatoid arthritis (RA) is the most common form of inflammatory arthropathy sustained by autoimmune responses. We examine here the current knowledge of tryptophan and arginine metabolisms and the main immunoregulatory pathways in amino acid catabolism, in both RA patients and experimental models of arthritis. We found that l-tryptophan (Trp) metabolism and, in particular, the kynurenine pathway would exert protective effects in all experimental models and in some, but not all, RA patients, possibly due to single nucleotide polymorphisms in the gene coding for indoleamine 2,3-dioxygenase 1 (IDO1; the enzyme catalyzing the rate-limiting step of the kynurenine pathway). The function, i.e., either protective or pathogenetic, of the l-arginine (Arg) metabolism in RA was less clear. In fact, although immunoregulatory arginase 1 (ARG1) was highly induced at the synovial level in RA patients, its true functional role is still unknown, possibly because of few available preclinical data. Therefore, our analysis would indicate that amino acid metabolism represents a fruitful area of research for new drug targets for a more effective and safe therapy of RA and that further studies are demanding to pursue such an important objective.


Assuntos
Arginina/imunologia , Arginina/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Triptofano/imunologia , Triptofano/metabolismo , Animais , Humanos , Cinurenina/imunologia , Cinurenina/metabolismo , Microbiota/imunologia , Microbiota/fisiologia , Serotonina/imunologia , Serotonina/metabolismo
17.
Int J Tryptophan Res ; 13: 1178646920956646, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061415

RESUMO

Type 1 diabetes (T1D) is characterized by anomalous functioning of the immuno regulatory, tryptophan-catabolic enzyme indoleamine 2,3 dioxygenase 1 (IDO1). In T1D, the levels of kynurenine-the first byproduct of tryptophan degradation via IDO1-are significantly lower than in nondiabetic controls, such that defective immune regulation by IDO1 has been recognized as potentially contributing to autoimmunity in T1D. Because tryptophan catabolism-and the production of immune regulatory catabolites-also occurs via the gut microbiota, we measured serum levels of tryptophan, and metabolites thereof, in pediatric, diabetic patients after a 3-month oral course of Lactobacillus rhamnosus GG. Daily administration of the probiotic significantly affected circulating levels of tryptophan as well as the qualitative pattern of metabolite formation in the diabetic patients, while it decreased inflammatory cytokine production by the patients. This study suggests for the first time that a probiotic treatment may affect systemic tryptophan metabolism and restrain proinflammatory profile in pediatric T1D.

18.
Front Immunol ; 10: 1973, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481962

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first step in the kynurenine pathway of tryptophan (Trp) degradation that produces several biologically active Trp metabolites. L-kynurenine (Kyn), the first byproduct by IDO1, promotes immunoregulatory effects via activation of the Aryl hydrocarbon Receptor (AhR) in dendritic cells (DCs) and T lymphocytes. We here identified the nuclear coactivator 7 (NCOA7) as a molecular target of 3-hydroxyanthranilic acid (3-HAA), a Trp metabolite produced downstream of Kyn along the kynurenine pathway. In cells overexpressing NCOA7 and AhR, the presence of 3-HAA increased the association of the two molecules and enhanced Kyn-driven, AhR-dependent gene transcription. Physiologically, conventional (cDCs) but not plasmacytoid DCs or other immune cells expressed high levels of NCOA7. In cocultures of CD4+ T cells with cDCs, the co-addition of Kyn and 3-HAA significantly increased the induction of Foxp3+ regulatory T cells and the production of immunosuppressive transforming growth factor ß in an NCOA7-dependent fashion. Thus, the co-presence of NCOA7 and the Trp metabolite 3-HAA can selectively enhance the activation of ubiquitary AhR in cDCs and consequent immunoregulatory effects. Because NCOA7 is often overexpressed and/or mutated in tumor microenvironments, our current data may provide evidence for a new immune check-point mechanism based on Trp metabolism and AhR.


Assuntos
Ácido 3-Hidroxiantranílico/metabolismo , Células Dendríticas/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Células Dendríticas/imunologia , Feminino , Humanos , Cinurenina/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Coativadores de Receptor Nuclear/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Linfócitos T Reguladores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA