Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Small ; 17(14): e2005241, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33734595

RESUMO

Magnetic hyperthermia (MH) harnesses the heat-releasing properties of superparamagnetic iron oxide nanoparticles (SPIONs) and has potential to stimulate immune activation in the tumor microenvironment whilst sparing surrounding normal tissues. To assess feasibility of localized MH in vivo, SPIONs are injected intratumorally and their fate tracked by Zirconium-89-positron emission tomography, histological analysis, and electron microscopy. Experiments show that an average of 49% (21-87%, n = 9) of SPIONs are retained within the tumor or immediately surrounding tissue. In situ heating is subsequently generated by exposure to an externally applied alternating magnetic field and monitored by thermal imaging. Tissue response to hyperthermia, measured by immunohistochemical image analysis, reveals specific and localized heat-shock protein expression following treatment. Tumor growth inhibition is also observed. To evaluate the potential effects of MH on the immune landscape, flow cytometry is used to characterize immune cells from excised tumors and draining lymph nodes. Results show an influx of activated cytotoxic T cells, alongside an increase in proliferating regulatory T cells, following treatment. Complementary changes are found in draining lymph nodes. In conclusion, results indicate that biologically reactive MH is achievable in vivo and can generate localized changes consistent with an anti-tumor immune response.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Compostos Férricos , Humanos , Hipertermia , Campos Magnéticos , Magnetismo
2.
Int J Hyperthermia ; 38(1): 743-754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33941016

RESUMO

OBJECTIVE: Deep-tissue localization of thermal doses is a long-standing challenge in magnetic field hyperthermia (MFH), and remains a limitation of the clinical application of MFH to date. Here, we show that pulse sequencing of MFH leads to a more persistent inhibition of tumor growth and less systemic impact than continuous MFH, even when delivering the same thermal dose. METHODS: We used an in vivo orthotopic murine model of pancreatic PANC-1 cancer, which was designed with a view to the forthcoming 'NoCanTher' clinical study, and featured MFH alongside systemic chemotherapy (SyC: gemcitabine and nab-paclitaxel). In parallel, in silico thermal modelling was implemented. RESULTS: Tumor volumes 27 days after the start of MFH/SyC treatment were 53% (of the initial volume) in the pulse MFH group, compared to 136% in the continuous MFH group, and 337% in the non-treated controls. Systemically, pulse MFH led to ca. 50% less core-temperature increase in the mice for a given injected dose of magnetic heating agent, and inflicted lower levels of the stress marker, as seen in the blood-borne neutrophil-to-lymphocyte ratio (1.7, compared to 3.2 for continuous MFH + SyC, and 1.2 for controls). CONCLUSION: Our data provided insights into the influence of pulse sequencing on the observed biological outcomes, and validated the nature of the improved thermal dose localization, alongside significant lowering of the overall energy expenditure entailed in the treatment.


Assuntos
Hipertermia Induzida , Neoplasias Pancreáticas , Animais , Hipertermia , Campos Magnéticos , Magnetismo , Camundongos , Neoplasias Pancreáticas/terapia
3.
Int J Hyperthermia ; 34(6): 671-686, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29046072

RESUMO

We offer a critique of what constitutes a suitable dosage limit, in both clinical and preclinical studies, for interstitially administered magnetic nanoparticles in order to enable therapeutic hyperthermia under the action of an externally applied alternating magnetic field. We approach this first from the perspective of the currently approved clinical dosages of magnetic nanoparticles in the fields of MRI contrast enhancement, sentinel node detection, iron replacement therapy and magnetic thermoablation. We compare this to a simple analytical model of the achievable hyperthermia temperature rise in both humans and animals based on the interstitially administered dose, the heating and dispersion characteristics of the injected fluid, and the strength and frequency of the applied magnetic field. We show that under appropriately chosen conditions a therapeutic temperature rise is achievable in clinically relevant situations. We also show that in such cases it may paradoxically be harder to achieve the same therapeutic temperature rise in a preclinical model. We comment on the implications for the evidence-based translation of hyperthermia based interventions from the laboratory to the clinic.


Assuntos
Hipertermia Induzida/métodos , Magnetismo/métodos , Nanopartículas/administração & dosagem , Humanos
4.
Ophthalmology ; 124(10): 1556-1564, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28651813

RESUMO

PURPOSE: Acquired nystagmus, a highly symptomatic consequence of damage to the substrates of oculomotor control, often is resistant to pharmacotherapy. Although heterogeneous in its neural cause, its expression is unified at the effector-the eye muscles themselves-where physical damping of the oscillation offers an alternative approach. Because direct surgical fixation would immobilize the globe, action at a distance is required to damp the oscillation at the point of fixation, allowing unhindered gaze shifts at other times. Implementing this idea magnetically, herein we describe the successful implantation of a novel magnetic oculomotor prosthesis in a patient. DESIGN: Case report of a pilot, experimental intervention. PARTICIPANT: A 49-year-old man with longstanding, medication-resistant, upbeat nystagmus resulting from a paraneoplastic syndrome caused by stage 2A, grade I, nodular sclerosing Hodgkin's lymphoma. METHODS: We designed a 2-part, titanium-encased, rare-earth magnet oculomotor prosthesis, powered to damp nystagmus without interfering with the larger forces involved in saccades. Its damping effects were confirmed when applied externally. We proceeded to implant the device in the patient, comparing visual functions and high-resolution oculography before and after implantation and monitoring the patient for more than 4 years after surgery. MAIN OUTCOME MEASURES: We recorded Snellen visual acuity before and after intervention, as well as the amplitude, drift velocity, frequency, and intensity of the nystagmus in each eye. RESULTS: The patient reported a clinically significant improvement of 1 line of Snellen acuity (from 6/9 bilaterally to 6/6 on the left and 6/5-2 on the right), reflecting an objectively measured reduction in the amplitude, drift velocity, frequency, and intensity of the nystagmus. These improvements were maintained throughout a follow-up of 4 years and enabled him to return to paid employment. CONCLUSIONS: This work opens a new field of implantable therapeutic devices-oculomotor prosthetics-designed to modify eye movements dynamically by physical means in cases where a purely neural approach is ineffective. Applied to acquired nystagmus refractory to all other interventions, it is shown successfully to damp pathologic eye oscillations while allowing normal saccadic shifts of gaze.


Assuntos
Campos Magnéticos , Nistagmo Patológico/cirurgia , Músculos Oculomotores/cirurgia , Próteses e Implantes , Movimentos Oculares/fisiologia , Humanos , Masculino , Metais Terras Raras , Pessoa de Meia-Idade , Nistagmo Patológico/fisiopatologia , Músculos Oculomotores/fisiopatologia , Desenho de Prótese , Implantação de Prótese , Visão Ocular/fisiologia , Acuidade Visual/fisiologia
5.
Nano Lett ; 16(9): 5652-60, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27541372

RESUMO

A sound theoretical rationale for the design of a magnetic nanocarrier capable of magnetic capture in vivo after intravenous administration could help elucidate the parameters necessary for in vivo magnetic tumor targeting. In this work, we utilized our long-circulating polymeric magnetic nanocarriers, encapsulating increasing amounts of superparamagnetic iron oxide nanoparticles (SPIONs) in a biocompatible oil carrier, to study the effects of SPION loading and of applied magnetic field strength on magnetic tumor targeting in CT26 tumor-bearing mice. Under controlled conditions, the in vivo magnetic targeting was quantified and found to be directly proportional to SPION loading and magnetic field strength. Highest SPION loading, however, resulted in a reduced blood circulation time and a plateauing of the magnetic targeting. Mathematical modeling was undertaken to compute the in vivo magnetic, viscoelastic, convective, and diffusive forces acting on the nanocapsules (NCs) in accordance with the Nacev-Shapiro construct, and this was then used to extrapolate to the expected behavior in humans. The model predicted that in the latter case, the NCs and magnetic forces applied here would have been sufficient to achieve successful targeting in humans. Lastly, an in vivo murine tumor growth delay study was performed using docetaxel (DTX)-encapsulated NCs. Magnetic targeting was found to offer enhanced therapeutic efficacy and improve mice survival compared to passive targeting at drug doses of ca. 5-8 mg of DTX/kg. This is, to our knowledge, the first study that truly bridges the gap between preclinical experiments and clinical translation in the field of magnetic drug targeting.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Humanos , Imageamento por Ressonância Magnética , Magnetismo , Camundongos , Camundongos Endogâmicos BALB C , Modelos Teóricos , Nanocápsulas
6.
Ann Surg Oncol ; 23(6): 2070-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26895751

RESUMO

BACKGROUND: Sentinel lymph node biopsy (SLNB) in melanoma is currently performed using the standard dual technique (radioisotope and blue dye). The magnetic technique is non-radioactive and provides a brown color change in the sentinel lymph node (SLN) through an intradermal injection of a magnetic tracer, and utilizes a handheld magnetometer. The MELAMAG Trial compared the magnetic technique with the standard technique for SLNB in melanoma. METHODS: Clinically node-negative patients with primary cutaneous melanoma were recruited from four centers. SLNB was undertaken after intradermal administration of both the standard (blue dye and radioisotope) and magnetic tracers. The SLN identification rate per patient, with the two techniques, was compared. RESULTS: A total of 133 patients were recruited, 129 of which were available for final analysis. The sentinel node identification rate was 97.7 % (126/129) with the standard technique and 95.3 % (123/129) with the magnetic technique [2.3 % difference; 95 % upper confidence limit (CL) 6.4; 5.4 % discordance]. With radioisotope alone, the SLN identification rate was 95.3 % (123/129), as with the magnetic technique (0 % difference; 95 % upper CL 4.5; 7.8 % discordance). The lymph node retrieval rate was 1.99 nodes per patient overall, 1.78 with the standard technique and 1.87 with the magnetic technique. CONCLUSIONS: The magnetic technique is feasible for SLNB in melanoma with a high SLN identification rate, but is associated with skin staining. When compared with the standard dual technique, it did not reach our predefined non-inferiority margin.


Assuntos
Corantes , Imãs , Melanoma/patologia , Biópsia de Linfonodo Sentinela , Linfonodo Sentinela/patologia , Idoso , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Agências Internacionais , Masculino , Melanoma/cirurgia , Pessoa de Meia-Idade , Prognóstico , Linfonodo Sentinela/cirurgia
7.
Nanomedicine ; 11(4): 993-1002, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25680540

RESUMO

The magnetic technique for sentinel lymph node biopsy (SLNB) has been evaluated in several clinical trials. An in vivo porcine model was developed to optimise the magnetic technique by evaluating the effect of differing volume, concentration and time of injection of magnetic tracer. A total of 60 sentinel node procedures were undertaken. There was a significant correlation between magnetometer counts and iron content of excised sentinel lymph nodes (SLNs) (r=0.82; P<0.001). Total number of SLNs increased with increasing volumes of magnetic tracer (P<0.001). Transcutaneous magnetometer counts increased with increasing time from injection of magnetic tracer (P<0.0001), plateauing within 60min. Increasing concentration resulted in higher iron content of SLNs (P=0.006). Increasing magnetic tracer volume and injecting prior to surgery improve transcutaneous 'hotspot' identification but very high volumes, increase the number of nodes excised. FROM THE CLINICAL EDITOR: Sentinel lymph node biopsy (SLNB) is the standard of care for axillary staging of breast cancer patients. Although the current gold standard technique is the combined injection of technetium-labelled nanocolloid and blue dye into the breast, the magnetic technique, using superparamagnetic carboxydextran-coated iron oxide (SPIO), has also been demonstrated as a feasible alternative. In this article, the authors set up to study factors in order to optimize the magnetic tracers.


Assuntos
Meios de Contraste/farmacologia , Campos Magnéticos , Magnetometria/instrumentação , Magnetometria/métodos , Modelos Biológicos , Biópsia de Linfonodo Sentinela , Animais , Biópsia de Linfonodo Sentinela/instrumentação , Biópsia de Linfonodo Sentinela/métodos , Suínos
8.
Ann Surg Oncol ; 21(4): 1237-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24322530

RESUMO

BACKGROUND: The SentiMAG Multicentre Trial evaluated a new magnetic technique for sentinel lymph node biopsy (SLNB) against the standard (radioisotope and blue dye or radioisotope alone). The magnetic technique does not use radiation and provides both a color change (brown dye) and a handheld probe for node localization. The primary end point of this trial was defined as the proportion of sentinel nodes detected with each technique (identification rate). METHODS: A total of 160 women with breast cancer scheduled for SLNB, who were clinically and radiologically node negative, were recruited from seven centers in the United Kingdom and The Netherlands. SLNB was undertaken after administration of both the magnetic and standard tracers (radioisotope with or without blue dye). RESULTS: A total of 170 SLNB procedures were undertaken on 161 patients, and 1 patient was excluded, leaving 160 patients for further analysis. The identification rate was 95.0 % (152 of 160) with the standard technique and 94.4 % (151 of 160) with the magnetic technique (0.6 % difference; 95 % upper confidence limit 4.4 %; 6.9 % discordance). Of the 22 % (35 of 160) of patients with lymph node involvement, 16 % (25 of 160) had at least 1 macrometastasis, and 6 % (10 of 160) had at least a micrometastasis. Another 2.5 % (4 of 160) had isolated tumor cells. Of 404 lymph nodes removed, 297 (74 %) were true sentinel nodes. The lymph node retrieval rate was 2.5 nodes per patient overall, 1.9 nodes per patient with the standard technique, and 2.0 nodes per patient with the magnetic technique. CONCLUSIONS: The magnetic technique is a feasible technique for SLNB, with an identification rate that is not inferior to the standard technique.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Corantes , Linfonodos/patologia , Fenômenos Magnéticos , Adulto , Idoso , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/cirurgia , Carcinoma Intraductal não Infiltrante/cirurgia , Reações Falso-Negativas , Feminino , Seguimentos , Humanos , Agências Internacionais , Linfonodos/cirurgia , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Biópsia de Linfonodo Sentinela
9.
Breast Cancer Res Treat ; 141(1): 33-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23954989

RESUMO

The standard for the treatment of early non-palpable breast cancers is wide local excision directed by wire-guided localization and sentinel lymph node biopsy (SLNB). This has drawbacks technically and due to reliance upon radioisotopes. We evaluated the use of a magnetic tracer for its localization capabilities and concurrent performance of SLNB using a handheld magnetometer in a porcine model as a novel alternative to the current standard. Ethical approval by the IRCAD Ethics Review Board, Strasbourg (France) was received. A magnetic tracer was injected in varying volumes (0.1-5 mL) subcutaneously into the areolar of the left and right 3rd inguinal mammary glands in 16 mini-pigs. After 4 h magnetometer counts were taken at the injection sites and in the groins. The magnetometer was used to localize any in vivo signal from the draining inguinal lymph nodes. Magnetic SLNB followed by excision of the injection site was performed. The iron content of sentinel lymph nodes (SLNs) were graded and quantified. All excised specimens were weighed and volumes were calculated. Univariate analyses were performed to evaluate correlation. Magnetic SLNB was successful in all mini-pigs. There was a significant correlation (r = 0.86; p < 0.01) between magnetometer counts and iron content of SLNs. Grading of SLNs on both H&E and Perl's staining correlated significantly with the iron content (p = 0.001; p = 0.003) and magnetometer counts (p < 0.001; p = 0.004). The peak counts corresponded to the original magnetic tracer injection sites 4 h after injection in all cases. The mean volume and weight of excised injection site specimens was 2.9 cm(3) (SD 0.81) and 3.1 g (SD 0.85), respectively. Injection of ≥0.5 mL magnetic tracer was associated with significantly greater volume (p = 0.05) and weight of excision specimens (p = 0.01). SLNB and localization can be performed in vivo using a magnetic tracer. This could provide a viable alternative for lesion localization and concurrent SLNB in the treatment of non-palpable breast cancer.


Assuntos
Meios de Contraste , Compostos Férricos , Linfonodos/química , Magnetismo , Glândulas Mamárias Animais/anatomia & histologia , Nanopartículas , Biópsia de Linfonodo Sentinela/métodos , Animais , Meios de Contraste/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Feminino , Compostos Férricos/administração & dosagem , Virilha , Injeções , Linfonodos/anatomia & histologia , Magnetismo/instrumentação , Nanopartículas/administração & dosagem , Corantes de Rosanilina , Biópsia de Linfonodo Sentinela/instrumentação , Suínos , Porco Miniatura , Distribuição Tecidual
10.
Cancers (Basel) ; 16(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201461

RESUMO

There is a growing interest in exploring the therapeutically mediated modulation of tumor vascularization of pancreatic cancer, which is known for its poorly perfused tumor microenvironment limiting the delivery of therapeutic agents to the tumor site. Here, we assessed how magnetic hyperthermia in combination with chemotherapy selectively affects growth, the vascular compartment of tumors, and the presence of tumor cells expressing key regulators of angiogenesis. To that purpose, a orthotopic PANC-1 (fluorescent human pancreatic adenocarcinoma) mouse tumor model (Rj:Athym-Foxn1nu/nu) was used. Magnetic hyperthermia was applied alone or in combination with systemic chemotherapy (gemcitabine 50 mg per kg body weight, nab-pacitaxel 30 mg/kg body weight) on days 1 and 7 following magnetic nanoparticle application (dose: 1 mg per 100 mm3 of tumor). We used ultrasound imaging, immunohistochemistry, multi-spectral optoacoustic tomography (MSOT), and hematology to assess the biological parameters mentioned above. We found that magnetic hyperthermia in combination with gemcitabine/paclitaxel chemotherapy was able to impact tumor growth (decreased volumes and Ki67 expression) and to trigger neo-angiogenesis (increased small vessel diameter) as a result of the therapeutically mediated cell damages/stress in tumors. The applied stressors activated specific pro-angiogenic mechanisms, which differed from those seen in hypoxic conditions involving HIF-1α, since (a) treated tumors showed a significant decrease of cells expressing VEGF, CD31, HIF-1α, and neuropilin-1; and (b) the relative tumor blood volume and oxygen level remained unchanged. Neo-angiogenesis seems to be the result of the activation of cell stress pathways, like MAPK pathways (high number of pERK-expressing tumor cells). In the long term, the combination of magnetic hyperthermia and chemotherapy could potentially be applied to transiently modulate tumor angiogenesis and to improve drug accessibility during oncologic therapies of pancreatic cancer.

11.
Int J Hyperthermia ; 28(4): 362-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22621737

RESUMO

This paper reviews the uses of magnetism and ultrasound in therapeutic delivery applications. Emphasis is placed upon magnetic nanoparticles and microbubble ultrasound contrast agents. The underlying physical principles, history, key developments and limitations of these techniques for drug and gene delivery in vitro and in vivo are explored. The combination of ultrasonic and magnetic techniques is also reviewed with particular focus on magnetic microbubbles as delivery agents with the potential to combine the advantages of both methods whilst addressing many of their limitations. Finally, results are presented from a study of a new magnetic microbubble formulation which shows great applicability as a therapeutic delivery vehicle.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Magnetismo , Microbolhas , Som , Terapia por Ultrassom/métodos , Animais , Humanos
12.
Adv Sci (Weinh) ; 9(12): e2105333, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106965

RESUMO

Medical therapies achieve their control at expense to the patient in the form of a range of toxicities, which incur costs and diminish quality of life. Magnetic resonance navigation is an emergent technique that enables image-guided remote-control of magnetically labeled therapies and devices in the body, using a magnetic resonance imaging (MRI) system. Minimally INvasive IMage-guided Ablation (MINIMA), a novel, minimally invasive, MRI-guided ablation technique, which has the potential to avoid traditional toxicities, is presented. It comprises a thermoseed navigated to a target site using magnetic propulsion gradients generated by an MRI scanner, before inducing localized cell death using an MR-compatible thermoablative device. The authors demonstrate precise thermoseed imaging and navigation through brain tissue using an MRI system (0.3 mm), and they perform thermoablation in vitro and in vivo within subcutaneous tumors, with the focal ablation volume finely controlled by heating duration. MINIMA is a novel theranostic platform, combining imaging, navigation, and heating to deliver diagnosis and therapy in a single device.


Assuntos
Imagem por Ressonância Magnética Intervencionista , Neoplasias , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Qualidade de Vida
13.
Adv Sci (Weinh) ; 9(6): e2104194, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927381

RESUMO

Astrocytes play crucial and diverse roles in brain health and disease. The ability to selectively control astrocytes provides a valuable tool for understanding their function and has the therapeutic potential to correct dysfunction. Existing technologies such as optogenetics and chemogenetics require the introduction of foreign proteins, which adds a layer of complication and hinders their clinical translation. A novel technique, magnetomechanical stimulation (MMS), that enables remote and selective control of astrocytes without genetic modification is described here. MMS exploits the mechanosensitivity of astrocytes and triggers mechanogated Ca2+ and adenosine triphosphate (ATP) signaling by applying a magnetic field to antibody-functionalized magnetic particles that are targeted to astrocytes. Using purpose-built magnetic devices, the mechanosensory threshold of astrocytes is determined, a sub-micrometer particle for effective MMS is identified, the in vivo fate of the particles is established, and cardiovascular responses are induced in rats after particles are delivered to specific brainstem astrocytes. By eliminating the need for device implantation and genetic modification, MMS is a method for controlling astroglial activity with an improved prospect for clinical application than existing technologies.


Assuntos
Astrócitos/fisiologia , Encéfalo/fisiologia , Campos Magnéticos , Mecanotransdução Celular/fisiologia , Estimulação Física/métodos , Animais , Tronco Encefálico/fisiologia , Células Cultivadas , Feminino , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley
14.
Med Phys ; 38(7): 3932-43, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21858990

RESUMO

PURPOSE: Our aim was to compare different magnet arrangements for magnetic cell delivery to human lower leg arteries and investigate the theoretical targeting efficiency under realistic flow conditions as a possible treatment after angioplasty. Additionally the potential of scaling down or translating the magnetic actuation device for preclinical studies was explored. METHODS: Using finite element methods, the magnetic field distribution was calculated in 3D for the optimization of magnet arrangements. Computational fluid dynamics simulations were performed for the human posterior tibial artery with the geometry and boundary condition data derived from magnetic resonance imaging (MRI) studies. These simulations were used to trace the trajectories of cells for an optimized magnet arrangement. Additionally the behavior of cells close to the vessel wall was investigated using a fluid-structure interaction model. RESULTS: The optimal magnet for the lower leg arteries was a Halbach cylinder k3 variety (12 elements with 900 rotation steps for the magnetization orientation). With this magnet, numerical simulations predict a targeting efficiency of 6.25% could be achieved in the posterior tibial artery for cells containing 150 pg iron. Similar simulations, which were scaled down to rabbit dimensions while keeping the forces acting on a cell constant, lead to similar predicted targeting efficiencies. Fluid dynamic and fluid-structure interaction simulations predict that magnetically labeled cells within a 0.5% radii distance to the vessel wall would be attracted and remain at the wall under physiological flow conditions. CONCLUSIONS: First pass capture of magnetically labeled cells under pulsatile flow conditions in human lower leg arteries leads to low targeting efficiencies. However, this can be increased to almost 100% by stopping the blood flow for 5 min. A magnetic actuation device can be designed for animal models that generate magnetic forces achievable for cells in human leg arteries.


Assuntos
Transplante de Células/métodos , Células Endoteliais/efeitos da radiação , Células Endoteliais/transplante , Magnetismo/métodos , Modelos Biológicos , Doença Arterial Periférica/fisiopatologia , Doença Arterial Periférica/cirurgia , Animais , Células Cultivadas , Simulação por Computador , Campos Eletromagnéticos , Células Endoteliais/fisiologia , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Pessoa de Meia-Idade , Coelhos
15.
Lab Chip ; 21(19): 3775-3783, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581389

RESUMO

Despite the wide usage of magnetic nanoparticles, it remains challenging to synthesise particles with properties that exploit each application's full potential. Time consuming experimental procedures and particle analysis hinder process development, which is commonly constrained to a handful of experiments without considering particle formation kinetics, reproducibility and scalability. Flow reactors are known for their potential of large-scale production and high-throughput screening of process parameters. These advantages, however, have not been utilised for magnetic nanoparticle synthesis where particle characterisation is performed, with a few exceptions, post-synthesis. To overcome this bottleneck, we developed a highly sensitive magnetometer for flow reactors to characterise magnetic nanoparticles in solution in-line and in real-time using alternating current susceptometry. This flow magnetometer enriches the flow-chemistry toolbox by facilitating continuous quality control and high-throughput screening of magnetic nanoparticle syntheses. The sensitivity required to monitor magnetic nanoparticle syntheses at the typically low concentrations (<100 mM of Fe) was achieved by comparing the signals induced in the sample and reference cell, each of which contained near-identical pairs of induction and pick-up coils. The reference cell was filled only with air, whereas the sample cell was a flow cell allowing sample solution to pass through. Balancing the flow and reference cell impedance with a newly developed electronic circuit was pivotal for the magnetometer's sensitivity. To showcase its potential, the flow magnetometer was used to monitor two iron oxide nanoparticle syntheses with well-known particle formation kinetics, i.e., co-precipitation syntheses with sodium carbonate and sodium hydroxide as base, which have been previously studied via synchrotron X-ray diffraction. The flow magnetometer facilitated batch (on-line) and flow (in-line) synthesis monitoring, providing new insights into the particle formation kinetics as well as, effect of temperature and pH. The compact lab-scale flow device presented here, opens up new possibilities for magnetic nanoparticle synthesis and manufacturing, including 1) early stage reaction characterisation 2) process monitoring and control and 3) high-throughput screening in combination with flow reactors.


Assuntos
Nanopartículas de Magnetita , Cinética , Reprodutibilidade dos Testes
16.
Part Part Syst Charact ; 37(4): 1900411, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34526737

RESUMO

Materials with a high atomic number (Z) are shown to cause an increase in the level of cell kill by ionizing radiation when introduced into tumor cells. This study uses in vitro experiments to investigate the differences in radiosensitization between two cell lines (MCF-7 and U87) and three commercially available nanoparticles (gold, gadolinium, and iron oxide) irradiated by 6 MV X-rays. To assess cell survival, clonogenic assays are carried out for all variables considered, with a concentration of 0.5 mg mL-1 for each nanoparticle material used. This study demonstrates differences in cell survival between nanoparticles and cell line. U87 shows the greatest enhancement with gadolinium nanoparticles (2.02 ± 0.36), whereas MCF-7 cells have higher enhancement with gold nanoparticles (1.74 ± 0.08). Mass spectrometry, however, shows highest elemental uptake with iron oxide and U87 cells with 4.95 ± 0.82 pg of iron oxide per cell. A complex relationship between cellular elemental uptake is demonstrated, highlighting an inverse correlation with the enhancement, but a positive relation with DNA damage when comparing the same nanoparticle between the two cell lines.

17.
Chem Sci ; 10(9): 2592-2597, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30996974

RESUMO

We introduce the concept of surface radio-mineralisation (SRM) to describe the chelate-free radiolabelling of iron-oxide and ferrite nanoparticles. We demonstrate the effectiveness of SRM with both 111In and 89Zr for bare, polymer-matrix multicore, and surface-functionalised magnetite/maghemite nanoparticles; and for bare Y3Fe5O12 nanoparticles. By analogy with geological mineralisation (the hydrothermal deposition of metals as minerals in ore bodies or lodes) we demonstrate that the heat-induced and aqueous SRM process deposits radiometal-oxides onto the nanoparticle or core surfaces, passing through the matrix or coating if present, without changing the size, structure, or magnetic properties of the nanoparticle or core. We show in a mouse model followed over 7 days that the SRM is sufficient to allow quantitative, non-invasive, prolonged, whole-body localisation of injected nanoparticles with nuclear imaging.

18.
Biochim Biophys Acta ; 1772(1): 21-5, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17097860

RESUMO

Magnetometry analysis of brain tissue sub-samples from two neuroferritinopathy patients provides a preliminary indication that the amount of magnetic iron compounds associated with this rare disease is significantly larger than in age/sex-matched controls. The primary iron compounds contributing to the remnant magnetization of the tissue above 50 K and at body temperature are both blocked and superparamagnetic (SPM) biogenic magnetite (Fe3O4) and/or maghemite (gamma-Fe2O3). The concentration of SPM magnetite is significant and appears to be proportional to the concentration of ferritin, which varies with progression of the disease. The mutated ferritin protein appears to be responsible for the presence of iron oxide nano-particules, which in turn could be responsible for extensive damage in the brain.


Assuntos
Gânglios da Base/metabolismo , Compostos Férricos/metabolismo , Ferritinas/genética , Óxido Ferroso-Férrico/metabolismo , Doenças Neurodegenerativas/metabolismo , Idoso , Gânglios da Base/química , Feminino , Compostos Férricos/análise , Óxido Ferroso-Férrico/análise , Humanos , Magnetismo , Nanopartículas/análise , Doenças Neurodegenerativas/genética , Doenças Raras , Temperatura
19.
J Alzheimers Dis ; 13(1): 49-52, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18334756

RESUMO

A study of the magnetic properties of superior temporal gyrus brain tissue from 11 Alzheimer's disease (AD) and 11 age-matched control subjects demonstrates an exponential correlation between the concentrations of the Fe;{2+}-ion-containing iron oxide, magnetite (Fe{3}O{4}), and the fraction of those particles that are smaller than 20 nm in diameter. These data provide circumstantial evidence in favor of their genesis within the 8 nm diameter cores of the iron storage protein ferritin. We also show, for the first time, that the total concentration of biogenic magnetite is generally higher in the AD brain (in some cases as much as 15 times greater than controls) and that there are gender-based differences, with AD female subjects having significantly higher concentrations than all other groups. These results provide insights which may guide current efforts to develop iron-based MRI diagnosis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Ferro/metabolismo , Imageamento por Ressonância Magnética , Lobo Temporal/metabolismo , Lobo Temporal/patologia , Humanos
20.
J Biomed Mater Res A ; 104(10): 2412-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27176658

RESUMO

Superparamagnetic iron oxide nanoparticles (SPION) are used for an increasing range of biomedical applications, from imaging to mechanical actuation of cells and tissue. The aim of this study was to investigate the loading of smooth muscle cells (SMC) with SPION and to explore what effect this has on the phenotype of the cells. Adherent human SMC were loaded with ∼17 pg of unconjugated, negatively charged, 50 nm SPION. Clusters of the internalized SPION particles were held in discrete cytoplasmic vesicles. Internalized SPION did not cause any change in cell morphology, proliferation, metabolic activity, or staining pattern of actin and calponin, two of the muscle contractile proteins involved in force generation. However, internalized SPION inhibited the increased gene expression of actin and calponin normally observed when cells are incubated under differentiation conditions. The observed change in the control of gene expression of muscle contractile apparatus by SPION has not previously been described. This finding could offer novel approaches for regulating the phenotype of SMC and warrants further investigation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2412-2419, 2016.


Assuntos
Materiais Biocompatíveis/análise , Nanopartículas de Magnetita/análise , Miócitos de Músculo Liso/citologia , Materiais Biocompatíveis/metabolismo , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Nanopartículas de Magnetita/ultraestrutura , Miócitos de Músculo Liso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA