Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901810

RESUMO

Lipidomics and metabolomics are nowadays widely used to provide promising insights into the pathophysiology of cellular stress disorders. Our study expands, with the use of a hyphenated ion mobility mass spectrometric platform, the understanding of the cellular processes and stress due to microgravity. By lipid profiling of human erythrocytes, we annotated complex lipids such as oxidized phosphocholines, phosphocholines bearing arachidonic in their moiety, as well as sphingomyelins and hexosyl ceramides associated with microgravity conditions. Overall, our findings give an insight into the molecular alterations and identify erythrocyte lipidomics signatures associated with microgravity conditions. If the present results are confirmed in future studies, they may help to develop suitable treatments for astronauts after return to Earth.


Assuntos
Lipidômica , Ausência de Peso , Humanos , Lipidômica/métodos , Metabolômica , Esfingomielinas , Eritrócitos
2.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175460

RESUMO

Mesenchymal stem cells are undifferentiated cells able to acquire different phenotypes under specific stimuli. Wharton's jelly is a tissue in the umbilical cord that contains mesenchymal stromal cells (MSCs) with a high plasticity and differentiation potential. Their regeneration capability is compromised by cell damage and aging. The main cause of cell damage is oxidative stress coming from an imbalance between oxidant and antioxidant species. Microgravity represents a stressing condition able to induce ROS production, ultimately leading to different subcellular compartment damages. Here, we analyzed molecular programs of stemness (Oct-4; SOX2; Nanog), cell senescence, p19, p21 (WAF1/CIP1), p53, and stress response in WJ-MSCs exposed to microgravity. From our results, we can infer that a simulated microgravity environment is able to influence WJ-MSC behavior by modulating the expression of stress and stemness-related genes, cell proliferation regulators, and both proapoptotic and antiapoptotic genes. Our results suggest a cellular adaptation addressed to survival occurring during the first hours of simulated microgravity, followed by a loss of stemness and proliferation capability, probably related to the appearance of a molecular program of senescence.


Assuntos
Células-Tronco Mesenquimais , Ausência de Peso , Geleia de Wharton , Diferenciação Celular , Senescência Celular , Cordão Umbilical , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células , Células Cultivadas
3.
Mar Drugs ; 20(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35621951

RESUMO

Spirulina is the most studied cyanobacterium species for both pharmacological applications and the food industry. The aim of the present review is to summarize the potential benefits of the use of Spirulina for improving healthcare both in space and on Earth. Regarding the first field of application, Spirulina could represent a new technology for the sustainment of long-duration manned missions to planets beyond the Lower Earth Orbit (e.g., Mars); furthermore, it could help astronauts stay healthy while exposed to a variety of stress factors that can have negative consequences even after years. As far as the second field of application, Spirulina could have an active role in various aspects of medicine, such as metabolism, oncology, ophthalmology, central and peripheral nervous systems, and nephrology. The recent findings of the capacity of Spirulina to improve stem cells mobility and to increase immune response have opened new intriguing scenarios in oncological and infectious diseases, respectively.


Assuntos
Voo Espacial , Spirulina , Astronautas , Humanos
4.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499118

RESUMO

Alzheimer's disease (AD) is characterized by an initial accumulation of amyloid plaques and neurofibrillary tangles, along with the depletion of cholinergic markers. The currently available therapies for AD do not present any disease-modifying effects, with the available in vitro platforms to study either AD drug candidates or basic biology not fully recapitulating the main features of the disease or being extremely costly, such as iPSC-derived neurons. In the present work, we developed and validated a novel cell-based AD model featuring Tau hyperphosphorylation and degenerative neuronal morphology. Using the model, we evaluated the efficacy of three different groups of newly synthesized acetylcholinesterase (AChE) inhibitors, along with a new dual acetylcholinesterase/glycogen synthase kinase 3 inhibitor, as potential AD treatment on differentiated SH-SY5Y cells treated with glyceraldehyde to induce Tau hyperphosphorylation, and subsequently neurite degeneration and cell death. Testing of such compounds on the newly developed model revealed an overall improvement of the induced defects by inhibition of AChE alone, showing a reduction of S396 aberrant phosphorylation along with a moderate amelioration of the neuron-like morphology. Finally, simultaneous AChE/GSK3 inhibition further enhanced the limited effects observed by AChE inhibition alone, resulting in an improvement of all the key parameters, such as cell viability, morphology, and Tau abnormal phosphorylation.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/farmacologia , Proteínas tau/metabolismo , Acetilcolinesterase/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Fosforilação
5.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743319

RESUMO

Erythrocytes are highly specialized cells in human body, and their main function is to ensure the gas exchanges, O2 and CO2, within the body. The exposure to microgravity environment leads to several health risks such as those affecting red blood cells. In this work, we investigated the changes that occur in the structure and function of red blood cells under simulated microgravity, compared to terrestrial conditions, at different time points using biochemical and biophysical techniques. Erythrocytes exposed to simulated microgravity showed morphological changes, a constant increase in reactive oxygen species (ROS), a significant reduction in total antioxidant capacity (TAC), a remarkable and constant decrease in total glutathione (GSH) concentration, and an augmentation in malondialdehyde (MDA) at increasing times. Moreover, experiments were performed to evaluate the lipid profile of erythrocyte membranes which showed an upregulation in the following membrane phosphocholines (PC): PC16:0_16:0, PC 33:5, PC18:2_18:2, PC 15:1_20:4 and SM d42:1. Thus, remarkable changes in erythrocyte cytoskeletal architecture and membrane stiffness due to oxidative damage have been found under microgravity conditions, in addition to factors that contribute to the plasticity of the red blood cells (RBCs) including shape, size, cell viscosity and membrane rigidity. This study represents our first investigation into the effects of microgravity on erythrocytes and will be followed by other experiments towards understanding the behaviour of different human cell types in microgravity.


Assuntos
Ausência de Peso , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Glutationa/metabolismo , Humanos , Malondialdeído/metabolismo , Estresse Oxidativo
6.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360739

RESUMO

Changes in plasma membrane curvature and intracellular ionic strength are two key features of cell volume perturbations. In this hypothesis we present a model of the responsible molecular apparatus which is assembled of two molecular motors [non-muscle myosin II (NMMII) and protrusive actin polymerization], a spring [a complex between the plasma membrane (PM) and the submembrane actin-based cytoskeleton (smACSK) which behaves like a viscoelastic solid] and the associated signaling proteins. We hypothesize that this apparatus senses changes in both the plasma membrane curvature and the ionic strength and in turn activates signaling pathways responsible for regulatory volume increase (RVI) and regulatory volume decrease (RVD). During cell volume changes hydrostatic pressure (HP) changes drive alterations in the cell membrane curvature. HP difference has opposite directions in swelling versus shrinkage, thus allowing distinction between them. By analogy with actomyosin contractility that appears to sense stiffness of the extracellular matrix we propose that NMMII and actin polymerization can actively probe the transmembrane gradient in HP. Furthermore, NMMII and protein-protein interactions in the actin cortex are sensitive to ionic strength. Emerging data on direct binding to and regulating activities of transmembrane mechanosensors by NMMII and actin cortex provide routes for signal transduction from transmembrane mechanosensors to cell volume regulatory mechanisms.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Tamanho Celular , Miosina Tipo II/metabolismo , Transdução de Sinais , Actomiosina/metabolismo , Animais , Humanos , Pressão Hidrostática
7.
Sensors (Basel) ; 20(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947584

RESUMO

Reactive oxygen species (ROS) are central effectors of inflammation and play a key role in cell signaling. Previous reports have described an association between oxidative events and the modulation of innate immunity. However, the role of redox signaling in adaptive immunity is still not well understood. This work is based on a novel investigation of diamide, a specific oxidant of sulfhydryl groups, and it is the first performed in purified T cell tyrosine phosphorylation signaling. Our data show that ex vivo T cells respond to -SH group oxidation with a distinctive tyrosine phosphorylation response and that these events elicit specific cellular responses. The expression of two essential T-cell receptors, CD25 and CD62L, and T-cell cytokine release is also affected in a specific way. Experiments with Syk inhibitors indicate a major contribution of this kinase in these phenomena. This pilot work confirms the presence of crosstalk between oxidation of cysteine residues and tyrosine phosphorylation changes, resulting in a series of functional events in freshly isolated T cells. Our experiments show a novel role of Syk inhibitors in applying their anti-inflammatory action through the inhibition of a ROS-generated reaction.


Assuntos
Selectina L/metabolismo , Receptores de Interleucina-2/metabolismo , Transdução de Sinais/fisiologia , Quinase Syk/metabolismo , Linfócitos T , Sobrevivência Celular , Células Cultivadas , Diamida , Humanos , Oxirredução , Fosforilação , Linfócitos T/metabolismo , Linfócitos T/fisiologia
8.
Int J Mol Sci ; 21(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32646002

RESUMO

In red blood cells, hemoglobin iron represents the most plausible candidate to catalyze artemisinin activation but the limited reactivity of iron bound to hemoglobin does not play in favor for its direct involvement. Denatured hemoglobin appears a more likely candidate for artemisinin redox activation because it is expected to contain reactive iron and it has been described to release free heme and/or iron in erythrocyte. The aim of our study is to investigate, using three different methods: fluorescence, electron paramagnetic resonance and liquid chromatography coupled to mass spectrometry, how increasing the level of accessible iron into the red blood cells can enhance the reactive oxygen species (ROS) production derived from artemisinin. The over-increase of iron was achieved using phenylhydrazine, a strong oxidant that causes oxidative stress within erythrocytes, resulting in oxidation of oxyhemoglobin and leading to the formation of methemoglobin, which is subsequently converted into irreversible hemichromes (iron (III) compounds). Our findings confirmed, using the iron III chelator, desferrioxamine, the indirect participation of iron (III) compounds in the activation process of artemisinins. Furthermore, in strong reducing conditions, the activation of artemisinin and the consequent production of ROS was enhanced. In conclusion, we demonstrate, through the measurement of intra-erythrocytic superoxide and hydrogen peroxide production using various methods, that artemisinin activation can be drastically enhanced by pre-oxidation of erythrocytes.


Assuntos
Artemisininas/uso terapêutico , Eritrócitos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Desferroxamina/uso terapêutico , Eritrócitos/metabolismo , Feminino , Heme/metabolismo , Hemoglobinas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Masculino , Metemoglobina/metabolismo , Pessoa de Meia-Idade , Oxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxiemoglobinas/metabolismo , Superóxidos/metabolismo
9.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977621

RESUMO

Resistance to antimalarial drugs has spread rapidly over the past few decades. The WHO recommends artemisinin-based combination therapies for the treatment of uncomplicated malaria, but unfortunately these approaches are losing their efficacy in large areas of Southeast Asia. In 2016, artemisinin resistance was confirmed in 5 countries of the Greater Mekong subregion. We focused our study on Syk inhibitors as antimalarial drugs. The Syk protein is present in human erythrocytes, and the membrane of protein band 3 is its major target following activation by oxidant stress. Tyr phosphorylation of band 3 occurs during P. falciparum growth, leading to the release of microparticles containing hemicromes and structural weakening of the host cell membrane, simplifying merozoite reinfection. Syk inhibitors block these events by interacting with the Syk protein's catalytic site. We performed in vitro proteomics and in silico studies and compared the results. In vitro studies were based on treatment of the parasite's cellular cultures with different concentrations of Syk inhibitors, while proteomics studies were focused on the Tyr phosphorylation of band 3 by Syk protein with the same concentrations of drugs. In silico studies were based on different molecular modeling approaches in order to analyze and optimize the ligand-protein interactions and obtain the highest efficacy in vitro. In the presence of Syk inhibitors, we observed a marked decrease of band 3 Tyr phosphorylation according to the increase of the drug's concentration. Our studies could be useful for the structural optimization of these compounds and for the design of novel Syk inhibitors in the future.


Assuntos
Antimaláricos , Eritrócitos , Malária Falciparum , Plasmodium falciparum/crescimento & desenvolvimento , Inibidores de Proteínas Quinases , Quinase Syk , Antimaláricos/química , Antimaláricos/farmacologia , Relação Dose-Resposta a Droga , Eritrócitos/enzimologia , Eritrócitos/parasitologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/enzimologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinase Syk/antagonistas & inibidores , Quinase Syk/química , Quinase Syk/metabolismo
10.
J Infect Dis ; 220(11): 1750-1760, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31549159

RESUMO

BACKGROUND: Hemoglobin (Hb) data are limited in Southeast Asian glucose-6-phosphate dehydrogenase (G6PD) deficient (G6PD-) patients treated weekly with the World Health Organization-recommended primaquine regimen (ie, 0.75 mg/kg/week for 8 weeks [PQ 0.75]). METHODS: We treated Cambodians who had acute Plasmodium vivax infection with PQ0.75 and a 3-day course of dihydroartemisinin/piperaquine and determined the Hb level, reticulocyte count, G6PD genotype, and Hb type. RESULTS: Seventy-five patients (male sex, 63) aged 5-63 years (median, 24 years) were enrolled. Eighteen were G6PD deficient (including 17 with G6PD Viangchan) and 57 were not G6PD deficient; 26 had HbE (of whom 25 were heterozygous), and 6 had α-/ß-thalassemia. Mean Hb concentrations at baseline (ie, day 0) were similar between G6PD deficient and G6PD normal patients (12.9 g/dL [range, 9‒16.3 g/dL] and 13.26 g/dL [range, 9.6‒16 g/dL], respectively; P = .46). G6PD deficiency (P = <.001), higher Hb concentration at baseline (P = <.001), higher parasitemia level at baseline (P = .02), and thalassemia (P = .027) influenced the initial decrease in Hb level, calculated as the nadir level minus the baseline level (range, -5.8-0 g/dL; mean, -1.88 g/dL). By day 14, the mean difference from the day 7 level (calculated as the day 14 level minus the day 7 level) was 0.03 g/dL (range, -0.25‒0.32 g/dL). Reticulocyte counts decreased from days 1 to 3, peaking on day 7 (in the G6PD normal group) and day 14 (in the G6PD deficient group); reticulocytemia at baseline (P = .001), G6PD deficiency (P = <.001), and female sex (P = .034) correlated with higher counts. One symptomatic, G6PD-deficient, anemic male patient was transfused on day 4. CONCLUSIONS: The first PQ0.75 exposure was associated with the greatest decrease in Hb level and 1 blood transfusion, followed by clinically insignificant decreases in Hb levels. PQ0.75 requires monitoring during the week after treatment. Safer antirelapse regimens are needed in Southeast Asia. CLINICAL TRIALS REGISTRATION: ACTRN12613000003774.


Assuntos
Antimaláricos/administração & dosagem , Quimioprevenção/métodos , Deficiência de Glucosefosfato Desidrogenase , Hemólise , Malária Vivax/tratamento farmacológico , Primaquina/administração & dosagem , Prevenção Secundária/métodos , Adolescente , Adulto , Antimaláricos/efeitos adversos , Povo Asiático , Quimioprevenção/efeitos adversos , Criança , Pré-Escolar , Feminino , Glucosefosfato Desidrogenase , Hemoglobinas/análise , Humanos , Masculino , Pessoa de Meia-Idade , Primaquina/efeitos adversos , Contagem de Reticulócitos , Adulto Jovem
11.
Blood ; 130(8): 1031-1040, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28634183

RESUMO

Band 3 (also known as the anion exchanger, SLCA1, AE1) constitutes the major attachment site of the spectrin-based cytoskeleton to the erythrocyte's lipid bilayer and thereby contributes critically to the stability of the red cell membrane. During the intraerythrocytic stage of Plasmodium falciparum's lifecycle, band 3 becomes tyrosine phosphorylated in response to oxidative stress, leading to a decrease in its affinity for the spectrin/actin cytoskeleton and causing global membrane destabilization. Because this membrane weakening is hypothesized to facilitate parasite egress and the consequent dissemination of released merozoites throughout the bloodstream, we decided to explore which tyrosine kinase inhibitors might block the kinase-induced membrane destabilization. We demonstrate here that multiple Syk kinase inhibitors both prevent parasite-induced band 3 tyrosine phosphorylation and inhibit parasite-promoted membrane destabilization. We also show that the same Syk kinase inhibitors suppress merozoite egress near the end of the parasite's intraerythrocytic lifecycle. Because the entrapped merozoites die when prevented from escaping their host erythrocytes and because some Syk inhibitors have displayed long-term safety in human clinical trials, we suggest Syk kinase inhibitors constitute a promising class of antimalarial drugs that can suppress parasitemia by inhibiting a host target that cannot be mutated by the parasite to evolve drug resistance.


Assuntos
Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/parasitologia , Parasitos/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Inibidores de Proteínas Quinases/farmacologia , Quinase Syk/antagonistas & inibidores , Adulto , Animais , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Diferenciação Celular/efeitos dos fármacos , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/ultraestrutura , Feminino , Humanos , Concentração Inibidora 50 , Malária Falciparum , Masculino , Parasitos/efeitos dos fármacos , Parasitos/ultraestrutura , Fosforilação/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/ultraestrutura , Quinase Syk/metabolismo
12.
Transfus Apher Sci ; 58(6): 102659, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31735654

RESUMO

BACKGROUND & OBJECTIVES: One of the most important problems in Mediterranean regions is finding blood donors to overcome the high need of its population. Understanding the health benefits of blood donation frequency will activate more volunteers to donate. The aim of this study variations of hematological and biochemical indices in regular male and female donors from Greece and Italy METHODS: A cross-sectional study consisted of 350 voluntary blood donors (VDs)was conducted in two mediterranean Blood Banks, Greece and Italy. The first one from the General Hospital of Naousa, Greece on samples of 90 regular and 60 first-time blood donors. The second one from AOU Sassari, Sardinia, Italy on convenient samples of 100 first-time samples and 100 regular blood donors. Donors' particulars were obtained from blood bank records. The hematological and biochemical parameters were determined for all donors and Total Antioxidant Status (TAS) only for greek VDs. RESULTS: High frequency blood donation of Greek VDs could be associated with evidence of reduction of body iron stores, reduced oxidative stress and improvement of liver function biomarkers in regular groups. Interestingly, Sardinian regular male VDs presented increased iron stores in compare with the first time VDs. In both Mediterranean populations (Greeks and Italians) the lipid profile of the female regular blood donors has been improved in compare with the first timers. CONCLUSION: Regular blood donation increases antioxidant capacity and affects positively the hematological parameters and biochemical biomarkers in donors. Gender plays an important role in relation to all hematological and biochemical parameters. Further studies in larger population should evaluate the beneficial-effect of blood donation and promote people to donate more frequent.


Assuntos
Antioxidantes/metabolismo , Doadores de Sangue , Adulto , Idoso , Feminino , Grécia , Humanos , Itália , Masculino , Região do Mediterrâneo , Pessoa de Meia-Idade
13.
J Mater Sci Mater Med ; 30(9): 98, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31440844

RESUMO

Calcium magnesium silicate glasses could be suggested for the synthesis of scaffolds for hard tissue regeneration, as they present a high residual glassy phase, high hardness values and hydroxyapatite-forming ability. The use of trace elements in the human body, such as Cu, could improve the biological performance of such glasses, as Cu is known to play a significant role in angiogenesis. Nano-bioceramics are preferable compared to their micro-scale counterparts, because of their increased surface area, which improves both mechanical properties and apatite-forming ability due to the increased nucleation sites provided, their high diffusion rates, reduced sintering time or temperature, and high mechanical properties. The aim of the present work was the evaluation of the effect of different ratios of Ethanol/TEOS and total amount of the inserted ammonia to the particle size, morphology and bioactive, hemolytic and antibacterial behavior of nanoparticles in the quaternary system SiO2-CaO-MgO-CuO. Different ratios of Ethanol/TEOS and ammonia amount affected the size and morphology of bioactive nanopowders. The optimum materials were synthesized with the highest ethanol/TEOS ratio and ammonia amount as verified by the enhanced apatite-forming ability and antibacterial and non-hemolytic properties.


Assuntos
Amônia/farmacologia , Cálcio/química , Cobre/química , Etanol/farmacologia , Silicatos/síntese química , Apatitas/síntese química , Apatitas/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Cerâmica/síntese química , Cerâmica/química , Relação Dose-Resposta a Droga , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Etanol/química , Vidro/química , Humanos , Teste de Materiais , Nanocompostos/química , Silicatos/química , Silicatos/farmacologia , Dióxido de Silício/química , Propriedades de Superfície/efeitos dos fármacos
15.
Cell Physiol Biochem ; 35(3): 1034-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25661802

RESUMO

BACKGROUND/AIMS: Several limiting factors for human health and performance in microgravity have been clearly identified arising from the immune system, and substantial research activities are required in order to provide the basic information for appropriate integrated risk management. The gravity-sensitive nature of cells of the immune system renders them an ideal biological model in search for general gravity-sensitive mechanisms and to understand how the architecture and function of human cells is related to the gravitational force and therefore adapted to life on Earth. METHODS: We investigated the influence of altered gravity in parabolic flight and 2D clinostat experiments on key proteins of activation and signaling in primary T lymphocytes. We quantified components of the signaling cascade 1.) in non-activated T lymphocytes to assess the "basal status" of the cascade and 2.) in the process of activation to assess the signal transduction. RESULTS: We found a rapid decrease of CD3 and IL-2R surface expression and reduced p-LAT after 20 seconds of altered gravity in non-activated primary T lymphocytes during parabolic flight. Furthermore, we observed decreased CD3 surface expression, reduced ZAP-70 abundance and increased histone H3-acetylation in activated T lymphocytes after 5 minutes of clinorotation and a transient downregulation of CD3 and stable downregulation of IL-2R during 60 minutes of clinorotation. CONCLUSION: CD3 and IL-2R are downregulated in primary T lymphocytes in altered gravity. We assume that a gravity condition around 1g is required for the expression of key surface receptors and appropriate regulation of signal molecules in T lymphocytes.


Assuntos
Complexo CD3/biossíntese , Ativação Linfocitária/imunologia , Receptores de Interleucina-2/biossíntese , Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/biossíntese , Células Cultivadas , Regulação da Expressão Gênica , Gravidade Alterada , Humanos , Sistema Imunitário/metabolismo , Ativação Linfocitária/genética , Rotação , Transdução de Sinais , Voo Espacial , Linfócitos T/imunologia , Ausência de Peso
16.
Haematologica ; 99(3): 570-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24038029

RESUMO

High counts of circulating microparticles, originated from the membrane of abnormal erythrocytes, have been associated with increased thrombotic risk in hemolytic disorders. Our studies indicate that in thalassemia intermedia patients the number of circulating microparticles correlates with the capability of the thalassemic erythrocytes to release microparticles. The microparticles are characteristically loaded with hemichromes formed by denatured α-chains. This finding was substantiated by the positive correlation observed in thalassemia intermedia patients between the amount of hemichromes measured in erythrocytes, their capability to release microparticles and the levels of plasma hemichromes. We observed that hemichromes, following their binding to the cytoplasmic domain of band 3, induce the formation of disulfide band 3 dimers that are subsequently phosphorylated by p72Syk kinase. Phosphorylation of oxidized band 3 appears to be relevant for the formation of large hemichromes/band 3 clusters that, in turn, induce local membrane instability and the release of microparticles. Proteomic analysis of microparticles released from thalassemia intermedia erythrocytes indicated that, besides hemichromes and clustered band 3, the microparticles contain a characteristic set of proteins that includes catalase, heat shock protein 70, peroxiredoxin 2 and carbonic anhydrase. High amounts of immunoglobulins and C3 have also been found to be associated with microparticles, accounting for their intense phagocytosis. The effect of p72Syk kinase inhibitors on the release of microparticles from thalassemia intermedia erythrocytes may indicate new perspectives for controlling the release of circulating microparticles in hemolytic anemias.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Eritrócitos/metabolismo , Hemeproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Tirosina Quinases/metabolismo , Talassemia/metabolismo , Ativação Enzimática , Eritrócitos/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Oxirredução , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Quinase Syk , Talassemia/sangue
17.
Life (Basel) ; 14(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38398760

RESUMO

The cultivation of cyanobacteria by exploiting available in situ resources represents a possible way to supply food and oxygen to astronauts during long-term crewed missions on Mars. Here, we evaluated the possibility of cultivating the extremophile cyanobacterium Chroococcidiopsis thermalis CCALA 050 under operating conditions that should occur within a dome hosting a recently patented process to produce nutrients and oxygen on Mars. The medium adopted to cultivate this cyanobacterium, named Martian medium, was obtained using a mixture of regolith leachate and astronauts' urine simulants that would be available in situ resources whose exploitation could reduce the mission payload. The results demonstrated that C. thermalis can grow in such a medium. For producing high biomass, the best medium consisted of specific percentages (40%vol) of Martian medium and a standard medium (60%vol). Biomass produced in such a medium exhibits excellent antioxidant properties and contains significant amounts of pigments. Lipidomic analysis demonstrated that biomass contains strategic lipid classes able to help the astronauts facing the oxidative stress and inflammatory phenomena taking place on Mars. These characteristics suggest that this strain could serve as a valuable nutritional resource for astronauts.

18.
Diagn Microbiol Infect Dis ; 110(2): 116479, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39116653

RESUMO

We report the use of a new multiplex Real-Time PCR platform to simultaneously identify 24 pathogens and 3 antimicrobial-resistance genes directly from respiratory samples of COVID-19 patients. Results were compared to culture-based diagnosis. Secondary infections were detected in 60% of COVID-19 patients by molecular analysis and 73% by microbiological assays, with no significant differences in accuracy, indicating Gram-negative bacteria as the predominant species. Among fungal superinfections, Aspergillus spp. were detected by both methods in more than 7% of COVID-19 patients. Oxacillin-resistant S. aureus and carbapenem-resistant K. pneumoniae were highlighted by both methods. Secondary microbial infections in SARS-CoV-2 patients are associated with poor outcomes and an increased risk of death. Since PCR-based tests significantly reduce the turnaround time to 4 hours and 30 minutes (compared to 48 hours for microbial culture), we strongly support the routine use of molecular techniques, in conjunction with microbiological analysis, to identify co/secondary infections.


Assuntos
COVID-19 , Coinfecção , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/microbiologia , SARS-CoV-2/genética , Coinfecção/diagnóstico , Coinfecção/microbiologia , Coinfecção/virologia , Masculino , Pessoa de Meia-Idade , Feminino , Técnicas de Diagnóstico Molecular/métodos , Idoso , Infecções Respiratórias/microbiologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/virologia , Reação em Cadeia da Polimerase Multiplex/métodos , Adulto , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia
19.
Microcirculation ; 20(6): 484-501, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23441854

RESUMO

The control of arteriolar diameters in microvasculature has been in the focus of studies on mechanisms matching oxygen demand and supply at the tissue level. Functionally, important vascular elements include EC, VSMC, and RBC. Integration of these different cell types into functional units aimed at matching tissue oxygen supply with tissue oxygen demand is only achieved when all these cells can respond to the signals of tissue oxygen demand. Many vasoactive agents that serve as signals of tissue oxygen demand have their receptors on all these types of cells (VSMC, EC, and RBC) implying that there can be a coordinated regulation of their behavior by the tissue oxygen demand. Such functions of RBC as oxygen carrying by Hb, rheology, and release of vasoactive agents are considered. Several common extra- and intracellular signaling pathways that link tissue oxygen demand with control of VSMC contractility, EC permeability, and RBC functioning are discussed.


Assuntos
Contração Muscular/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Animais , Arteríolas/metabolismo , Humanos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia
20.
Blood ; 117(22): 5998-6006, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21474668

RESUMO

The cytoplasmic domain of band 3 serves as a center of erythrocyte membrane organization and constitutes the major substrate of erythrocyte tyrosine kinases. Tyrosine phosphorylation of band 3 is induced by several physiologic stimuli, including malaria parasite invasion, cell shrinkage, normal cell aging, and oxidant stress (thalassemias, sickle cell disease, glucose-6-phosphate dehydrogenase deficiency, etc). In an effort to characterize the biologic sequelae of band 3 tyrosine phosphorylation, we looked for changes in the polypeptide's function that accompany its phosphorylation. We report that tyrosine phosphorylation promotes dissociation of band 3 from the spectrin-actin skeleton as evidenced by: (1) a decrease in ankyrin affinity in direct binding studies, (2) an increase in detergent extractability of band 3 from ghosts, (3) a rise in band 3 cross-linkability by bis-sulfosuccinimidyl-suberate, (4) significant changes in erythrocyte morphology, and (5) elevation of the rate of band 3 diffusion in intact cells. Because release of band 3 from its ankyrin and adducin linkages to the cytoskeleton can facilitate changes in multiple membrane properties, tyrosine phosphorylation of band 3 is argued to enable adaptive changes in erythrocyte biology that permit the cell to respond to the above stresses.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Citoesqueleto/metabolismo , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Tirosina/metabolismo , Actinas/metabolismo , Anquirinas/metabolismo , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Eritrócitos/efeitos dos fármacos , Humanos , Immunoblotting , Fosforilação/efeitos dos fármacos , Ligação Proteica , Vanadatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA