Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 23(2): e51287, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897944

RESUMO

RASSF1A promoter methylation has been correlated with tumor dedifferentiation and aggressive oncogenic behavior. Nevertheless, the underlying mechanism of RASSF1A-dependent tumor dedifferentiation remains elusive. Here, we show that RASSF1A directly uncouples the NOTCH-HES1 axis, a key suppressor of differentiation. Interestingly, the crosstalk of RASSF1A with HES1 occurs independently from the signaling route connecting RASSF1A with the Hippo pathway. At the molecular level, we demonstrate that RASSF1A acts as a scaffold essential for the SUMO-targeted E3 ligase SNURF/RNF4 to target HES1 for degradation. The reciprocal relationship between RASSF1A and HES1 is evident across a wide range of human tumors, highlighting the clinical significance of the identified pathway. We show that HES1 upregulation in a RASSF1A-depleted environment renders cells non-responsive to the downstream effects of γ-secretase inhibitors (GSIs) which restrict signaling at the level of the NOTCH receptor. Taken together, we report a mechanism through which RASSF1A exerts autonomous regulation of the critical Notch effector HES1, thus classifying RASSF1A expression as an integral determinant of the clinical effectiveness of Notch inhibitors.


Assuntos
Receptores Notch , Transdução de Sinais , Fatores de Transcrição HES-1 , Proteínas Supressoras de Tumor , Humanos , Proteínas Nucleares/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Appl Microbiol Biotechnol ; 107(4): 1373-1389, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36635396

RESUMO

Staphylococcus aureus biofilms are implicated in hospital infections due to elevated antibiotic and host immune system resistance. Molecular components of cell wall including amyloid proteins, peptidoglycans (PGs), and lipoteichoic acid (LTA) are crucial for biofilm formation and tolerance of methicillin-resistant S. aureus (MRSA). Significance of alkaline phosphatases (ALPs) for biofilm formation has been recorded. Serrapeptase (SPT), a protease of Serratia marcescens, possesses antimicrobial properties similar or superior to those of many antibiotics. In the present study, SPT anti-biofilm activity was demonstrated against S. aureus (ATCC 25923, methicillin-susceptible strain, methicillin-susceptible S. aureus (MSSA)) and MRSA (ST80), with IC50 values of 0.67 µg/mL and 7.70 µg/mL, respectively. SPT affected bacterial viability, causing a maximum inhibition of - 46% and - 27%, respectively. Decreased PGs content at [SPT] ≥ 0.5 µg/mL and ≥ 8 µg/mL was verified for MSSA and MRSA, respectively. In MSSA, LTA levels decreased significantly (up to - 40%) at lower SPT doses but increased at the highest dose of 2 µg/mL, a counter to spectacularly increased cellular and secreted LTA levels in MRSA. SPT also reduced amyloids of both strains. Additionally, intracellular ALP activity decreased in both MSSA and MRSA (up to - 85% and - 89%, respectively), while extracellular activity increased up to + 482% in MSSA and + 267% in MRSA. Altered levels of DING proteins, which are involved in phosphate metabolism, in SPT-treated bacteria, were also demonstrated here, implying impaired phosphorus homeostasis. The differential alterations in the studied molecular aspects underline the differences between MSSA and MRSA and offer new insights in the treatment of resistant bacterial biofilms. KEY POINTS: • SPT inhibits biofilm formation in methicillin-resistant and methicillin-susceptible S. aureus. • SPT treatment decreases bacterial viability, ALP activity, and cell wall composition. • SPT-treated bacteria present altered levels of phosphate-related DING proteins.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Meticilina , Antibacterianos/farmacologia , Peptídeo Hidrolases , Infecções Estafilocócicas/microbiologia , Biofilmes , Homeostase , Testes de Sensibilidade Microbiana
3.
Appl Microbiol Biotechnol ; 107(23): 7269-7285, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741938

RESUMO

Pseudomonas aeruginosa is an emerging threat for hospitalized and cystic fibrosis patients. Biofilm, a microbial community embedded in extracellular polymeric substance, fortifies bacteria against the immune system. In biofilms, the expression of functional amyloids is linked with highly aggregative, multi-resistant strains, and chronic infections. Serrapeptase (SPT), a protease possessing similar or superior anti-microbial properties with many antibiotics, presents anti-amyloid potential. However, studies on the employment of SPT against Pseudomonas biofilms and Fap amyloid, or the possible mechanisms of action are scarce. Here, SPT inhibited biofilm formation of P. aeruginosa ATCC 27853 on both plastic and glass surfaces, with an IC50 of 11.26 µg/mL and 0.27 µg/mL, respectively. The inhibitory effect of SPT on biofilm was also verified with optical microscopy of crystal violet-stained biofilms and with confocal microscopy. Additionally, SPT caused a dose-dependent decrease of bacterial viability (IC50 of 3.07 µg/mL) as demonstrated by MTT assay. Reduction of bacterial functional amyloids was also demonstrated, employing both fluorescence microscopy with thioflavin T and photometrical determination of Congo-red-positive compounds. Both viability and functional amyloids correlated significantly with biofilm inhibition. Finally, in silico molecular docking studies provided a mechanistic insight into the interaction of SPT with FapC or FapD, proving that both peptides are possible targets of SPT. These results offer new insights into the biofilm formation of P. aeruginosa and potentiate the involvement of SPT in the prevention and eradication of Pseudomonas biofilms. KEY POINTS: • Serrapeptase inhibits biofilm formation of P. aeruginosa on plastic and glass. • Biofilm inhibition correlated with reduced viability and functional amyloid levels. • In silico studies indicated that serrapeptase may target FapC and FapD peptides.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Simulação de Acoplamento Molecular , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana
4.
Breast Cancer Res Treat ; 186(2): 305-316, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389400

RESUMO

PURPOSE: Elevated expression of PAI-1 has been widely linked with adverse outcomes in a variety of human cancers, such as breast, gastric and ovarian cancers, rendering PAI-1 a prognostic biomarker. As a result, several chemical inhibitors are currently being developed against PAI-1; however, the clinical setting where they might confer survival benefits has not yet been elucidated. METHODS: RNA sequencing data analysis from the TCGA/GTEx cancer portals (n = 3607 samples). In silico molecular docking analyses to predict functional macromolecule interactions. ER-/PR- (MDA-MB-231) and ER+/PR+ (MCF-7) breast cancer cell lines implemented to assess the effect of oleuropein as a natural inhibitor of PAI-1-mediated oncogenic proliferation. RESULTS: We show that high PAI-1 levels inversely correlate with ER and PR expressions in a wide panel of estrogen/progesterone-responsive human malignancies. By implementing an in silico molecular docking analysis, we identify oleuropein, a phenolic component of olive oil, as a potent PAI-1-binding molecule displaying increased affinity compared to the other olive oil constituents. We demonstrate that EVOO or oleuropein treatment alone may act as a natural PAI-1 inhibitor by incrementally destabilising PAI-1 levels selectively in ER-/PR- breast cancer cells, accompanied by downstream caspase activation and cell growth inhibition. In contrast, ER+/PR+ breast cancer cells, where PAI-1 expression is absent or low, do not adequately respond to treatment. CONCLUSIONS: Our study demonstrates an inverse correlation between PAI-1 and ESR1/PGR levels, as well as overall patient survival in estrogen/progesterone-responsive human tumours. With a focus on breast cancer, our data identify oleuropein as a natural PAI-1 inhibitor and suggest that oleuropein-mediated PAI-1 destabilisation may confer clinical benefit only in ER-/PR- tumours.


Assuntos
Neoplasias da Mama , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Receptores de Estrogênio , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proliferação de Células , Feminino , Humanos , Glucosídeos Iridoides , Simulação de Acoplamento Molecular , Inibidor 1 de Ativador de Plasminogênio/genética , Receptores de Progesterona
5.
Biometals ; 34(1): 67-85, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33156436

RESUMO

The emergence of resistant bacterial strains mainly due to misuse of antibiotics has seriously affected our ability to treat bacterial illness, and the development of new classes of potent antimicrobial agents is desperately needed. In this study, we report the efficient synthesis of a new pyrazoline-pyridine containing ligand L1 which acts as an NN-donor for the formation of a novel silver (I) complex 2. The free ligand did not show antibacterial activity. High potency was exhibited by the complex against three Gram-negative bacteria, namely Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumanii with the minimum inhibitory concentration (MIC) ranging between 4 and 16 µg/mL (4.2-16.7 µM), and excellent activity against the fungi Candida albicans and Cryptococcus neoformans (MIC ≤ 0.25 µg/mL = 0.26 µM). Moreover, no hemolytic activity within the tested concentration range was observed. In addition to the planktonic growth inhibition, the biofilm formation of both Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa was significantly reduced by the complex at MIC concentrations in a dose-dependent manner for Pseudomonas aeruginosa, whereas a biphasic response was obtained for MRSA showing that the sub-MIC doses enhanced biofilm formation before its reduction at higher concentration. Finally, complex 2 exhibited strong DNA binding with a large drop in DNA viscosity indicating the absence of classical intercalation and suggesting the participation of the silver ion in DNA binding which may be related to its antibacterial activity. Taken together, the current results reveal that the pyrazoline-pyridine silver complexes are of high interest as novel antibacterial agents, justifying further in vitro and in vivo investigation.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Prata/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pirazóis/química , Piridinas/química , Prata/química
6.
Regul Toxicol Pharmacol ; 104: 59-73, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30872015

RESUMO

The biological activity induced by the extractable organic matter (EOM) of size-segregated airborne Particulate Matter (PM) from two urban sites, urban traffic (UT) and urban background (UB), was assessed by using bacterial assays. The Gram-negative Escherichia coli (E. coli) coliform bacterium was used to measure the intracellular formation of Reactive Oxygen Species (ROS) by employing the Nitroblue tetrazolium (NBT) reduction assay and the lipid peroxidation by malondialdehyde (MDA) measurement. To the best of our knowledge, this is the first study using E. coli for assessing the bioactivity of ambient air in term of oxidative mechanism studies. E. coli BL21 cells were further used for DNA damage assessment by employing the reporter (ß-galactosidase) gene expression assay. The bacterial strain S. typhimurium TA100 was used to assess the mutagenic potential of PM by employing the well-known mutation assay (Ames test). Four PM size fractions were assessed for bioactivity, specifically the quasi-ultrafine mode (<0.49 µm), the upper accumulation mode (0.49-0.97 µm), the upper fine mode (0.97-3 µm), and the coarse mode (>3.0 µm). The EOM of each PM sample included three organic fractions of successively increased polarity: the non-polar organic fraction (NPOF), the moderately polar organic fraction (MPOF), and the polar organic fraction (POF). The toxicological endpoints induced by each organic fraction were correlated with the concentrations of various organic chemical components determined in previous studies in an attempt to identify the chemical classes involved.


Assuntos
Dano ao DNA , Escherichia coli/efeitos dos fármacos , Compostos Orgânicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Testes de Mutagenicidade , Compostos Orgânicos/administração & dosagem , Material Particulado/administração & dosagem , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
7.
Hell J Nucl Med ; 22 Suppl: 195-208, 2019.
Artigo em El | MEDLINE | ID: mdl-30877738

RESUMO

Alzheimer's disease (AD) is a serious neurodegenerative disorder that manifests itself as progressive damage to memory and knowledge and is the main cause of dementia in the elderly. AD is characterized by extracellular deposition of amyloid-ß plate (Aß) and by the formation of neurofibrillary tangles, composed of hyperphosphorylated Tau protein. These modifications lead to neuronal cell death, vascular dysfunction and inflammatory disorders. Described as "elderly disease", AD is an escalating threat to developed countries as life expectancy is increasing. Because of its severity, AD has been the subject of extensive studies that address the pathogenesis of the disease. However, its main cause remains unknown. Most research on neurological conditions has been applied to animal models. However, due to their high cost and the uncertain translation of their results to humans along with moral concerns, in recent years, there has been a growing need for in vitro modeling to mimic the brain. The creation of the aforementioned models aims at a better understanding of the factors contributing to the onset of the disease and the faster development of the treatment of diseases affecting the nervous system. Given this need, in this review, new approaches to study neurodegenerative disease were recorded. A three-dimensional (3D) neurosphere-based microfluid chip has been reported and this model imitates the in vivo microenvironment of the brain and provides a steady flow of fluid that is observed in the brain's space. Uniform neurospheres, with cell interactions and contacts in all directions, were formed in a hollow microfuge and a steady interstitial flow rate was maintained using a small pump osmotic system. In this model it was possible to control the toxic effects of amyloid-ß. At the end, it was observed that the deposition of amyloid-ß through an osmotic micro-pump significantly reduced the viability of the neurospheres and caused destruction of the neuronal networks. Therefore, this model was proposed as an in vitro brain model for neurodegenerative disease and high-throughput drugs.


Assuntos
Doença de Alzheimer/patologia , Biomimética/instrumentação , Dispositivos Lab-On-A-Chip , Organoides/patologia , Peptídeos beta-Amiloides/toxicidade , Humanos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Osmose/efeitos dos fármacos
8.
Hell J Nucl Med ; 22 Suppl: 209-222, 2019.
Artigo em El | MEDLINE | ID: mdl-30877739

RESUMO

Neurovascular dysfunction is a central process in the pathogenesis of the stroke and most neurodegenerative diseases, including Alzheimer's disease. The multi-cell neurovascular unit (NVU) combines the components of the neural, vascular and extracellular matrix (ECM) into an important interface whose proper function is critical to maintaining brain health. Tissue engineering now offers new tools and information to promote understanding of NVU's operation. A promising area for the development of NVU models is their bio-production through 3D bio-printing to produce a multi-layered NVU in which the contribution of the different cell types to neurovascular function and dysfunction can be studied at molecular and cellular levels. Nerve and vascular cells are encapsulated in a construct suitable for their viability and growth. This construct, called "bioink", is a pre-gelled biomaterial, usually with encapsulated cells, which can be bio-printed and gelled to successfully form a solid construct. Bio-printing allows accurate placement of the neural and vascular cells to form appropriate interactions mimicking the in vivo state. Individual NVU cell types interact with the other cellular components of NVU through biochemical and physical markers, with direct and indirect interactions between neural and vascular components. The cell line sources, either derived from AD patients or healthy individuals, can be developed with the IPSCs technology. IPSCs can be obtained by different somatic cells via reprogramming strategies and further on differentiated into various cell lines that can be used to model disease, to discover new drugs and to treat cell replacement. Last but not least, the availability of 3D NVU models can also facilitate screening of drugs to correct neural dysfunction due to stroke, Alzheimer's disease and other dementia.


Assuntos
Doença de Alzheimer/fisiopatologia , Tinta , Sistema Nervoso/irrigação sanguínea , Sistema Nervoso/fisiopatologia , Impressão Tridimensional , Doença de Alzheimer/patologia , Animais , Humanos , Engenharia Tecidual
9.
Appl Microbiol Biotechnol ; 98(3): 1205-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23685478

RESUMO

The thermophilic bacterium Thermus thermophilus HB8 accumulates polyhydroxyalkanoates (PHAs) as intracellular granules used by cells as carbon and energy storage compounds. PHAs granules were isolated from cells grown in sodium gluconate (1.5 % w/v) as carbon source. Lytic activities are strongly associated and act to the PHAs granules proved with various methods. Specialized lytic trasglycosylases (LTGs) are muramidases capable of locally degrading the peptidoglycan (PG) meshwork of Gram negative bacteria. These enzymes cleave the ß-1,4-glycosidic linkages between the N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues of PG. Lysozyme-like activity/-ies were detected using lysoplate assay. Chitinolytic activity/-ies, were detected as N-acetyl glucosaminidases (NAG) (E.C.3.2.1.5.52) hydrolyzing the synthetic substrate p-nitrophenyl-N-acetyl-ß-D-glucosaminide (pNP-GlcNAc) releasing pNP and GlcNAc. Using zymogram analysis two abundant LTGs were revealed hydrolyzing cell wall of Micrococcus lysodeikticus or purified PG incorporated as natural substrates, in SDS-PAGE and then renaturation. These proteins corresponded in a SDS-PAGE and Coomassie-stained gel in molecular mass of 110 and 32 kDa respectively, were analyzed by MALDI-MS (Matrix-assisted laser desorption/ionization-Mass Spectrometry). The 110 kDa protein was identified as an S-layer domain-containing protein [gi|336233805], while the 32 kDa similar to the hypothetical protein VDG1235_2196 (gi/254443957). Overall, the localization of PG hydrolases in PHAs granules appears to be involved to their biogenesis from membranes, and probably promoting septal PG splitting and daughter cell separation.


Assuntos
Acetilglucosaminidase/isolamento & purificação , Acetilglucosaminidase/metabolismo , Peptidoglicano Glicosiltransferase/isolamento & purificação , Peptidoglicano Glicosiltransferase/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Thermus thermophilus/enzimologia , Thermus thermophilus/metabolismo , Acetilglucosaminidase/química , Parede Celular/metabolismo , Eletroforese em Gel de Poliacrilamida , Hidrólise , Micrococcus/metabolismo , Peso Molecular , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferase/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Front Nutr ; 11: 1388492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812942

RESUMO

Introduction: This study focuses on the assessment of extra virgin olive-oil and olive fruit-based formulations enriched with natural antioxidants as potential nutritional supplements for alleviating symptoms and long-term consequences of illnesses whose molecular pathophysiology is affected by oxidative stress and inflammation, such as Alzheimer's disease (AD). Methods: Besides evaluating cell viability and proliferation capacity of human hepatocellular carcinoma HepG2 cells exposed to formulations in culture, hepatotoxicity was also considered as an additional safety measure using quantitative real-time PCR on RNA samples isolated from the cell cultures and applying approaches of targeted molecular analysis to uncover potential pathway effects through gene expression profiling. Furthermore, the formulations investigated in this work contrast the addition of natural extract with chemical forms and evaluate the antioxidant delivery mode on cell toxicity. Results: The results indicate minimal cellular toxicity and a significant beneficial impact on metabolic molecular pathways in HepG2 cell cultures, thus paving the way for innovative therapeutic strategies using olive-oil and antioxidants in dietary supplements to minimize the long-term effects of oxidative stress and inflammatory signals in individuals being suffered by disorders like AD. Discussion: Overall, the experimental design and the data obtained support the notion of applying innovative molecular methodologies and research techniques to evidently advance the delivery, as well as the scientific impact and validation of nutritional supplements and dietary products to improve public health and healthcare outcomes.

11.
Pharmaceutics ; 15(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37242681

RESUMO

Cancer is designated as one of the principal causes of mortality universally. Among different types of cancer, brain cancer remains the most challenging one due to its aggressiveness, the ineffective permeation ability of drugs through the blood-brain barrier (BBB), and drug resistance. To overcome the aforementioned issues in fighting brain cancer, there is an imperative need for designing novel therapeutic approaches. Exosomes have been proposed as prospective "Trojan horse" nanocarriers of anticancer theranostics owing to their biocompatibility, increased stability, permeability, negligible immunogenicity, prolonged circulation time, and high loading capacity. This review provides a comprehensive discussion on the biological properties, physicochemical characteristics, isolation methods, biogenesis and internalization of exosomes, while it emphasizes their therapeutic and diagnostic potential as drug vehicle systems in brain cancer, highlighting recent advances in the research field. A comparison of the biological activity and therapeutic effectiveness of several exosome-encapsulated cargo including drugs and biomacromolecules underlines their great supremacy over the non-exosomal encapsulated cargo in the delivery, accumulation, and biological potency. Various studies on cell lines and animals give prominence to exosome-based nanoparticles (NPs) as a promising and alternative approach in the management of brain cancer.

12.
Appl Microbiol Biotechnol ; 94(5): 1265-77, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22354365

RESUMO

Thermus thermophilus HB8 flagellin protein (FliC) is encoded by the TTHC004 (fliC) gene, which is located in the pTT8 plasmid of the bacterium. Flagellin monomer and flagella fibres were isolated from a culture of T. thermophilus grown in rich medium, or in mineral salt medium with sodium gluconate as the carbon source. Western blot immunodetection with anti-FliC revealed a stable complex (FliC)(1)(FliS)(2) of flagellin (FliC, 27.7 kDa) with a homodimer of FliS (FliS, 18.2 kDa) that are encoded by TTHC004 and TTHC003 genes, respectively. The complex is dissociable at low pHs and/or by heat treatment. Glycan staining of purified flagella and treatment with N-glycosidase F suggested that flagellin of T. thermophilus is a glycosylated protein. Size exclusion chromatography revealed that flagellar filaments (FliC) have a molecular mass higher than 200 kDa. The formation of flagella is enhanced after prolonged cultivation time where phosphate and other nutrient were depleted, giving in the bacterium considerable swimming motility in low viscosity media.


Assuntos
Flagelos/fisiologia , Flagelina/genética , Flagelina/metabolismo , Locomoção , Thermus thermophilus/fisiologia , Western Blotting , Flagelos/genética , Flagelina/química , Peso Molecular , Plasmídeos , Ligação Proteica , Multimerização Proteica , Thermus thermophilus/química , Thermus thermophilus/genética
13.
J Neuroimmunol ; 361: 577744, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655990

RESUMO

Glial fibrillary acidic protein (GFAP) is the main constituent of the astrocytic cytoskeleton, overexpressed during reactive astrogliosis-a hallmark of Alzheimer's Disease (AD). GFAP and established biomarkers of neurodegeneration, inflammation, and apoptosis have been determined in the saliva of amnestic-single-domain Mild Cognitive Impairment (MCI) (Ν = 20), AD (Ν = 20) patients, and cognitively healthy Controls (Ν = 20). Salivary GFAP levels were found significantly decreased in MCI and AD patients and were proven an excellent biomarker for discriminating Controls from MCI or AD patients. GFAP levels correlate with studied biomarkers and Aß42, IL-1ß, and caspase-8 are its main predictors.


Assuntos
Doença de Alzheimer/diagnóstico , Apoptose , Disfunção Cognitiva/diagnóstico , Proteína Glial Fibrilar Ácida/análise , Doenças Neuroinflamatórias/diagnóstico , Saliva/química , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/análise , Área Sob a Curva , Biomarcadores , Caspase 8/análise , Estudos Transversais , Ciclo-Oxigenase 2/análise , Feminino , Humanos , Interleucina-1beta/análise , Masculino , Testes Neuropsicológicos , Fragmentos de Peptídeos/análise , Projetos Piloto , Curva ROC , Fator de Necrose Tumoral alfa/análise , Proteínas tau/análise
14.
J Neuroimmunol ; 357: 577561, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34091099

RESUMO

This study reports elevated levels of bacterial lipopolysaccharides (LPSs) and cyclooxygenases (COX-1/2) in blood serum and cerebrospinal fluid (CSF) of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) patients compared to cognitively healthy individuals, indicating LPSs as promising biomarkers, especially in serum. LPSs, in both fluids, positively correlate with COX-1/2, Αß42 and tau and negatively with mental state. Furthermore, COX-2 is the main determinant of LPSs presence in serum, whereas COX-1 in CSF. These results underline the significance of microbial/ inflammatory involvement in dementia and offer novel perspectives on the roles of LPSs and COX in pathogenesis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas de Bactérias/metabolismo , Disfunção Cognitiva/metabolismo , Lipopolissacarídeos/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Pharmaceutics ; 13(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467090

RESUMO

In this work, novel chrysin-loaded poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers were synthesized according to a modified oil-in-water single emulsion/solvent evaporation method, utilizing poly(vinyl alcohol) surfactant as stabilizer and dispersing agent for the emulsification, and were evaluated for their physico-chemical and morphological properties, loading capacity and entrapment efficiency and in vitro release of their load. The findings suggest that the novel micro-formulations possess a spherical and relatively wrinkled structure with sizes ranging between 2.4 and 24.7 µm and a highly negative surface charge with z-potential values between (-18.1)-(-14.1) mV. The entrapment efficiency of chrysin in the poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers was estimated to be 58.10% and 43.63%, whereas the loading capacity was found to be 3.79% and 15.85%, respectively. The average release percentage of chrysin was estimated to be 23.10% and 18.01%, respectively. The novel micromaterials were further biologically evaluated for their hemolytic activity through hemocompatibility studies over a range of hematological parameters and cytoxicity against the epithelial human breast cancer cell line MDA-MB 231. The poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers reached an IC50 value with an encapsulated chrysin content of 149.19 µM and 312.18 µM, respectively, and showed sufficient blood compatibility displaying significantly low (up to 2%) hemolytic percentages at concentrations between 5 and 500 µg·mL-1.

16.
J Inorg Biochem ; 221: 111402, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33975249

RESUMO

An oxovanadium(IV) - curcumin based complex, viz. [VO(cur)(2,2´-bipy)(H2O)] where cur is curcumin and bipy is bipyridine, previously synthesized, has been studied for interaction with albumin and DNA. Fluorescence emission spectroscopy was used to evaluate the interaction of the complex with bovine serum albumin (BSA) and the BSA-binding constant (Kb) was calculated to be 2.56 x 105 M-1, whereas a single great-affinity binding site was revealed. Moreover, the hemocompatibility test demonstrated that the complex presented low hemolytic fraction (mostly below 1%), in all concentrations tested (0-250 µΜ of complex, 5% DMSO) assuring a safe application in interaction with blood. The binding of the complex to DNA was also investigated using absorption, fluorescence, and viscometry methods indicating a binding through a minor groove mode. From competitive studies with ethidium bromide the apparent binding constant value to DNA was estimated to be 4.82 x 106 M-1. Stern-Volmer quenching phenomenon gave a ΚSV constant [1.92 (± 0.05) x 104 M-1] and kq constant [8.33 (± 0.2) x 1011 M-1s-1]. Molecular docking simulations on the crystal structure of BSA, calf thymus DNA, and DNA gyrase, as well as pharmacophore analysis for BSA target, were also employed to study in silico the ability of [VO(cur)(2,2´-bipy)(H2O)] to bind to these target bio-macromolecules and explain the observed in vitro activity.


Assuntos
Complexos de Coordenação/metabolismo , Curcumina/metabolismo , DNA Girase/metabolismo , DNA/metabolismo , Soroalbumina Bovina/metabolismo , Animais , Sítios de Ligação , Bovinos , Complexos de Coordenação/química , Complexos de Coordenação/toxicidade , Curcumina/análogos & derivados , Curcumina/toxicidade , DNA/química , DNA Girase/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Soroalbumina Bovina/química , Vanádio/química , Vanádio/toxicidade , Viscosidade/efeitos dos fármacos
17.
Appl Microbiol Biotechnol ; 88(4): 939-51, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20703873

RESUMO

The potential production of rhamnolipids was demonstrated using the thermophilic eubacterium Thermus thermophilus HB8 and sunflower seed oil or oleic acid as carbon sources. Sunflower seed oil was directly hydrolyzed by secretion of lipase and became a favorable carbon source for rhamnolipids production. Rhamnolipids levels were attainted high values, comparable to those produced by Pseudomonas strains from similar sources. Rhamnolipids synthesis in oleic acid exhibited a long period of induction, while in sunflower seed oil, the synthesis is more rapid. Glucose resulted in a more protracted period of rhamnolipids production after exhaustion of each or both carbon sources. Both mono- and di-rhamnolipids were identified by thin-layer chromatography (TLC) in the total rhamnolipids extract. The molecular composition of the produced biosurfactant was evaluated by Fourier transform infrared (FTIR) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and LC-MS analysis. Furthermore, secretion of rhamnolipids was confirmed on agar plates. The antimicrobial activity of rhamnolipids was detected against the bacterium Micrococcus lysodeikticus using a lysoplate assay. These results demonstrate that rhamnolipids produced in these substrates can be useful in both environmental and food industry applications by using cheap oil wastes. The alternative use of this thermophilic microorganism opens a new perspective concerning the valorization of wastes containing plant oils or frying oils to reduce the cost of rhamnolipids production.


Assuntos
Glicolipídeos/biossíntese , Ácido Oleico/metabolismo , Óleos de Plantas/metabolismo , Thermus thermophilus/metabolismo , Cromatografia em Camada Fina , Fermentação , Resíduos Industriais , Lipase/metabolismo , Óleo de Girassol , Tensoativos/química , Fatores de Tempo
18.
J Sep Sci ; 33(6-7): 787-92, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20222072

RESUMO

Polymer-based monoliths with zwitterionic surface character were synthesized in capillary columns following a two-step approach to provide versatile electrochromatographic stationary phases exhibiting potentiality of both hydrophilic interaction and RP separation modes. UV-initiated free radical copolymerization of N-acryloxysuccinimide and ethylene dimethacrylate was performed using azobisisobutyronitrile as initiator and toluene as porogen. One of the originalities of this approach relies on the dual role of the N-acryloxysuccinimide monomer that is successively used during the preparation protocol to first covalently graft chromatographic selectors on the monolith surface via simple nucleophilic substitution reaction and then to generate negative charges through hydrolysis of remaining N-hydroxysuccinimide units. In this respect, the grafting of hexyldiamine affords potential cationic surface charges. It is shown that it is possible to tune, controlling the pH of the mobile phase, the intensity and direction of the generated EOF. Moreover, the nature of the interfacial interaction process responsible for the observed separations is well governed by the composition of the mobile phase. Polymer backbone hydrophilization is proposed as an efficient way to improve the HILIC behavior of poly(N-acryloxysuccinimide-co-ethylene dimethacrylate) based monolithic CEC columns together with the grafting of an alkyldiamine incorporating a shorter aliphatic segment.

19.
Front Pharmacol ; 11: 396, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300301

RESUMO

Human neurodegenerative diseases, such as Alzheimer's disease (AD), are not easily modeled in vitro due to the inaccessibility of brain tissue and the level of complexity required by existing cell culture systems. Three-dimensional (3D) brain organoid systems generated from human pluripotent stem cells (hPSCs) have demonstrated considerable potential in recapitulating key features of AD pathophysiology, such as amyloid plaque- and neurofibrillary tangle-like structures. A number of AD brain organoid models have also been used as platforms to assess the efficacy of pharmacological agents in disease progression. However, despite the fact that stem cell-derived brain organoids mimic early aspects of brain development, they fail to model complex cell-cell interactions pertaining to different regions of the human brain and aspects of natural processes such as cell differentiation and aging. Here, we review current advances and limitations accompanying several hPSC-derived organoid methodologies, as well as recent attempts to utilize them as therapeutic platforms. We additionally discuss comparative benefits and disadvantages of the various hPSC-derived organoid generation protocols and differentiation strategies. Lastly, we provide a comparison of hPSC-derived organoids to primary tissue-derived organoids, examining the future potential and advantages of both systems in modeling neurodegenerative disorders, especially AD.

20.
J Inorg Biochem ; 208: 111085, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32454249

RESUMO

The interaction of Cu(NO3)2·3H2O with the sulfonyl o-pyridine carboxamidoxime N'-(4-nitrophenylsulfonyloxy)picolinimidamide (L) resulted in the mononuclear complex [Cu(L1)2](L2)2 (1), where L1 = pyridine-2-carboxamidine ligand and (L2)- = 4-nitrobenzenesulfonate anion derived from the homolytic cleavage of the NO bond of L. The complex was characterized by diverse techniques including single-crystal X-ray crystallography. From the antimicrobial tests performed, complex 1 seems to be active against gram-negative bacterial strains. The complex binds tightly and reversibly to serum albumins and tightly to calf-thymus DNA via an intercalative mode and also via electrostatic interactions (as expected due to its cationic nature). Additionally, it interacts with (pBluescriptSK(+)) plasmid DNA in a concentration-dependent manner. The results from the present in silico molecular modeling simulations provide useful complementary insights for the elucidation of the mechanism of action of the studied complex at a molecular level. Molecular modeling calculations provide a molecular basis for the understanding of both the impairment of DNA by its binding with the studied complex and the ability of this compound to act as an antibacterial agent, most probably by its activity against DNA-gyrase, as well as for transportation through serum albumins and possible interaction with other protein targets involved in various diseases.


Assuntos
Antibacterianos , Bactérias/crescimento & desenvolvimento , Complexos de Coordenação , Cobre , Substâncias Intercalantes , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , DNA/química , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Piridinas/química , Piridinas/farmacologia , Soroalbumina Bovina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA