Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34772801

RESUMO

Exchanges of protein sequence modules support leaps in function unavailable through point mutations during evolution. Here we study the role of the two RAD51-interacting modules within the eight binding BRC repeats of BRCA2. We created 64 chimeric repeats by shuffling these modules and measured their binding to RAD51. We found that certain shuffled module combinations were stronger binders than any of the module combinations in the natural repeats. Surprisingly, the contribution from the two modules was poorly correlated with affinities of natural repeats, with a weak BRC8 repeat containing the most effective N-terminal module. The binding of the strongest chimera, BRC8-2, to RAD51 was improved by -2.4 kCal/mol compared to the strongest natural repeat, BRC4. A crystal structure of RAD51:BRC8-2 complex shows an improved interface fit and an extended ß-hairpin in this repeat. BRC8-2 was shown to function in human cells, preventing the formation of nuclear RAD51 foci after ionizing radiation.


Assuntos
Ligação Proteica/fisiologia , Rad51 Recombinase/metabolismo , Sequência de Aminoácidos , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Humanos
2.
Biochem J ; 479(10): 1031-1043, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35502837

RESUMO

Interaction of BRCA2 through ca. 30 amino acid residue motifs, BRC repeats, with RAD51 is a conserved feature of the double-strand DNA break repair by homologous recombination in eukaryotes. In humans the binding of the eight BRC repeats is defined by two sequence motifs, FxxA and LFDE, interacting with distinct sites on RAD51. Little is known of the interaction of BRC repeats in other species, especially in protozoans, where variable number of BRC repeats are found in BRCA2 proteins. Here, we have studied in detail the interactions of the two BRC repeats in Leishmania infantum BRCA2 with RAD51. We show LiBRC1 is a high-affinity repeat and determine the crystal structure of its complex with LiRAD51. Using truncation mutagenesis of the LiBRC1 repeat, we demonstrate that high affinity binding is maintained in the absence of an LFDE-like motif and suggest compensatory structural features. These observations point towards a divergent evolution of BRC repeats, where a common FxxA-binding ancestor evolved additional contacts for affinity maturation and fine-tuning.


Assuntos
Proteína BRCA2 , Rad51 Recombinase , Motivos de Aminoácidos , Proteína BRCA2/química , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligação Proteica , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
3.
Org Biomol Chem ; 18(28): 5359-5369, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32390036

RESUMO

Analogs of the known inhibitor (peptide pDI) of the p53/MDM2 protein-protein interaction are reported, which are stapled by linkers bearing a photoisomerizable diarylethene moiety. The corresponding photoisomers possess significantly different affinities to the p53-interacting domain of the human MDM2. Apparent dissociation constants are in the picomolar-to-low nanomolar range for those isomers with diarylethene in the "open" configuration, but up to eight times larger for the corresponding "closed" isomers. Spectroscopic, structural, and computational studies showed that the stapling linkers of the peptides contribute to their binding. Calorimetry revealed that the binding of the "closed" isomers is mostly enthalpy-driven, whereas the "open" photoforms bind to the protein stronger due to their increased binding entropy. The results suggest that conformational dynamics of the protein-peptide complexes may explain the differences in the thermodynamic profiles of the binding.


Assuntos
Etilenos/química , Peptídeos/química , Proteínas Proto-Oncogênicas c-mdm2/química , Termodinâmica , Proteína Supressora de Tumor p53/química , Calorimetria , Etilenos/farmacologia , Humanos , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/farmacologia , Processos Fotoquímicos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores
4.
Bioorg Med Chem ; 26(9): 2488-2500, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29636223

RESUMO

2-Aminoquinazolin-4(3H)-ones were previously discovered as perspective leads for antimalarial drug development targeting the plasmepsins. Here we report the lead optimization studies with the aim to reduce inhibitor lipophilicity and increase selectivity versus the human aspartic protease Cathepsin D. Exploiting the solvent exposed area of the enzyme provides an option to install polar groups (R1) the 5-position of 2-aminoquinazolin-4(3H)-one to inhibitors such as carboxylic acid without scarifying enzymatic potency. Moreover, introduction of R1 substituents increased selectivity factors of compounds in this series up to 100-fold for Plm II, IV vs CatD inhibition. The introduction of flap pocket substituent (R2) at 7-postion of 2-aminoquinazolin-4(3H)-one allows to remove Ph group from THF ring without notably impairing Plm inhibitory potency. Based on these findings, inhibitors were developed, which show Plm II and IV inhibitory potency in low nanomolar range and remarkable selectivity against Cathepsin D along with decreased lipophilicity and increased solubility.


Assuntos
Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores de Proteases/química , Proteínas de Protozoários/antagonistas & inibidores , Quinazolinonas/química , Ácido Aspártico Endopeptidases/química , Sítios de Ligação , Catepsina D/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Plasmodium falciparum/enzimologia , Inibidores de Proteases/síntese química , Proteínas de Protozoários/química , Quinazolinonas/síntese química , Solubilidade , Relação Estrutura-Atividade
5.
Mol Ther Nucleic Acids ; 33: 871-884, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37680989

RESUMO

Targeted therapies have increased the treatment options for triple-negative breast cancer patients. However, the paucity of targetable biomarkers and tumor heterogeneity have limited the ability of precision-guided interventions to live up to their full potential. As affinity-targeting ligands, aptamers show high selectivity toward target molecules. Compared with antibodies, aptamers have lower molecular weight, increased stability during transportation, reduced immunogenicity, and increased tissue uptake. Recently, we reported discovery of the GreenB1 aptamer, which is internalized in cultured triple-negative MDA-MB-231 human breast cancer cells. We show that the GreenB1 aptamer specifically targets ß1-integrin, a protein linked previously to breast cancer cell invasiveness and migration. Aptamer binds to ß1-integrin with low nanomolar affinity. Our findings suggest potential applications for GreenB1-guided precision agents for diagnosis and therapy of cancers overexpressing ß1-integrin.

6.
Eur J Med Chem ; 257: 115504, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216812

RESUMO

Alterations in cancer metabolic pathways open up an opportunity for targeted and effective elimination of tumor cells. Pyruvate kinase M2 (PKM2) is predominantly expressed in proliferating cells and plays an essential role in directing glucose metabolism in cancer. Here, we report the design of novel class of selective PKM2 inhibitors as anti-cancer agents and their mechanism of action. Compound 5c being the most active with IC50 = 0.35 ± 0.07 µM, also downregulates PKM2 mRNA expression, modulates mitochondrial functionality, induces oxidative burst and is cytotoxic for various cancer types. Isoselenazolium chlorides have an unusual mechanism of PKM2 inhibition, inducing a functionally deficient tetrameric assembly, while exhibiting a competitive inhibitor character. The discovery of robust PKM2 inhibitors not only offers candidates for anticancer therapy but is also crucial for studying the role of PKM2 in cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Piruvato Quinase/metabolismo , Cloretos , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Isoformas de Proteínas
7.
Chem Sci ; 14(47): 13915-13923, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38075664

RESUMO

Stapling is a macrocyclisation method that connects amino acid side chains of a peptide to improve its pharmacological properties. We describe an approach for stapled peptide preparation and biochemical evaluation that combines recombinant expression of fusion constructs of target peptides and cysteine-reactive divinyl-heteroaryl chemistry as an alternative to solid-phase synthesis. We then employ this workflow to prepare and evaluate BRC-repeat-derived inhibitors of the RAD51 recombinase, showing that a diverse range of secondary structure elements in the BRC repeat can be stapled without compromising binding and function. Using X-ray crystallography, we elucidate the atomic-level features of the staple moieties. We then demonstrate that BRC-repeat-derived stapled peptides can disrupt RAD51 function in cells following ionising radiation treatment.

8.
Cell Host Microbe ; 30(3): 357-372.e11, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35182467

RESUMO

The induction of interferon (IFN)-stimulated genes by STATs is a critical host defense mechanism against virus infection. Here, we report that a highly expressed poxvirus protein, 018, inhibits IFN-induced signaling by binding to the SH2 domain of STAT1, thereby preventing the association of STAT1 with an activated IFN receptor. Despite encoding other inhibitors of IFN-induced signaling, a poxvirus mutant lacking 018 was attenuated in mice. The 2.0 Å crystal structure of the 018:STAT1 complex reveals a phosphotyrosine-independent mode of 018 binding to the SH2 domain of STAT1. Moreover, the STAT1-binding motif of 018 shows similarity to the STAT1-binding proteins from Nipah virus, which, similar to 018, block the association of STAT1 with an IFN receptor. Overall, these results uncover a conserved mechanism of STAT1 antagonism that is employed independently by distinct virus families.


Assuntos
Poxviridae , Animais , Interferons/metabolismo , Camundongos , Poxviridae/metabolismo , Fator de Transcrição STAT1/genética , Transdução de Sinais
9.
Eur J Med Chem ; 163: 344-352, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529637

RESUMO

Following up the open initiative of anti-malarial drug discovery, a GlaxoSmithKline (GSK) phenotypic screening hit was developed to generate hydroxyethylamine based plasmepsin (Plm) inhibitors exhibiting growth inhibition of the malaria parasite Plasmodium falciparum at nanomolar concentrations. Lead optimization studies were performed with the aim of improving Plm inhibition selectivity versus the related human aspartic protease cathepsin D (Cat D). Optimization studies were performed using Plm IV as a readily accessible model protein, the inhibition of which correlates with anti-malarial activity. Guided by sequence alignment of Plms and Cat D, selectivity-inducing structural motifs were modified in the S3 and S4 sub-pocket occupying substituents of the hydroxyethylamine inhibitors. This resulted in potent anti-malarials with an up to 50-fold Plm IV/Cat D selectivity factor. More detailed investigation of the mechanism of action of the selected compounds revealed that they inhibit maturation of the P. falciparum subtilisin-like protease SUB1, and also inhibit parasite egress from erythrocytes. Our results indicate that the anti-malarial activity of the compounds is linked to inhibition of the SUB1 maturase plasmepsin subtype Plm X.


Assuntos
Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Catepsina D/antagonistas & inibidores , Peptidomiméticos/farmacologia , Animais , Antimaláricos/química , Ácido Aspártico Endopeptidases/genética , Catepsina D/genética , Eritrócitos/parasitologia , Etilaminas/antagonistas & inibidores , Humanos , Peptidomiméticos/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Inibidores de Proteases/química , Alinhamento de Sequência
10.
J Med Chem ; 59(1): 374-87, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26670264

RESUMO

2-Aminoquinazolin-4(3H)-ones were identified as a novel class of malaria digestive vacuole plasmepsin inhibitors by using NMR-based fragment screening against Plm II. Initial fragment hit optimization led to a submicromolar inhibitor, which was cocrystallized with Plm II to produce an X-ray structure of the complex. The structure showed that 2-aminoquinazolin-4(3H)-ones bind to the open flap conformation of the enzyme and provided clues to target the flap pocket. Further improvement in potency was achieved via introduction of hydrophobic substituents occupying the flap pocket. Most of the 2-aminoquinazolin-4(3H)-one based inhibitors show a similar activity against digestive Plms I, II, and IV and >10-fold selectivity versus CatD, although varying the flap pocket substituent led to one Plm IV selective inhibitor. In cell-based assays, the compounds show growth inhibition of Plasmodium falciparum 3D7 with IC50 ∼ 1 µM. Together, these results suggest 2-aminoquinazolin-4(3H)-ones as perspective leads for future development of an antimalarial agent.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Quinazolinas/síntese química , Quinazolinas/farmacologia , Células 3T3 , Animais , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Malária/tratamento farmacológico , Malária/parasitologia , Camundongos , Modelos Moleculares , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA