Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(35): 21162-21169, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817481

RESUMO

We present results of a radiant cooling system that made the hot and humid tropical climate of Singapore feel cool and comfortable. Thermal radiation exchange between occupants and surfaces in the built environment can augment thermal comfort. The lack of widespread commercial adoption of radiant-cooling technologies is due to two widely held views: 1) The low temperature required for radiant cooling in humid environments will form condensation; and 2) cold surfaces will still cool adjacent air via convection, limiting overall radiant-cooling effectiveness. This work directly challenges these views and provides proof-of-concept solutions examined for a transient thermal-comfort scenario. We constructed a demonstrative outdoor radiant-cooling pavilion in Singapore that used an infrared-transparent, low-density polyethylene membrane to provide radiant cooling at temperatures below the dew point. Test subjects who experienced the pavilion (n = 37) reported a "satisfactory" thermal sensation 79% of the time, despite experiencing 29.6 ± 0.9 °C air at 66.5 ± 5% relative humidity and with low air movement of 0.26 ± 0.18 m⋅s-1 Comfort was achieved with a coincident mean radiant temperature of 23.9 ± 0.8 °C, requiring a chilled water-supply temperature of 17.0 ± 1.8 °C. The pavilion operated successfully without any observed condensation on exposed surfaces, despite an observed dew-point temperature of 23.7 ± 0.7 °C. The coldest conditions observed without condensation used a chilled water-supply temperature 12.7 °C below the dew point, which resulted in a mean radiant temperature 3.6 °C below the dew point.

2.
PLoS Pathog ; 16(7): e1008704, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658939

RESUMO

Uncertainty about the importance of influenza transmission by airborne droplet nuclei generates controversy for infection control. Human challenge-transmission studies have been supported as the most promising approach to fill this knowledge gap. Healthy, seronegative volunteer 'Donors' (n = 52) were randomly selected for intranasal challenge with influenza A/Wisconsin/67/2005 (H3N2). 'Recipients' randomized to Intervention (IR, n = 40) or Control (CR, n = 35) groups were exposed to Donors for four days. IRs wore face shields and hand sanitized frequently to limit large droplet and contact transmission. One transmitted infection was confirmed by serology in a CR, yielding a secondary attack rate of 2.9% among CR, 0% in IR (p = 0.47 for group difference), and 1.3% overall, significantly less than 16% (p<0.001) expected based on a proof-of-concept study secondary attack rate and considering that there were twice as many Donors and days of exposure. The main difference between these studies was mechanical building ventilation in the follow-on study, suggesting a possible role for aerosols.


Assuntos
Influenza Humana/transmissão , Aerossóis , Feminino , Humanos , Vírus da Influenza A Subtipo H3N2 , Masculino
3.
Indoor Air ; 32(1): e12917, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34477251

RESUMO

Tracer gas experiments were conducted in a 158 m3 room with overhead supply diffusers to study dispersion of contaminants from simulated speaking in physically distanced meeting and classroom configurations. The room was contained within a 237 m3 cell with open plenum return to the HVAC system. Heated manikins at desks and a researcher operating the tracer release apparatus presented 8-9 thermal plumes. Experiments were conducted under conditions of no forced air and neutral, cooled, or heated air supplied at 980-1100 cmh, and with/out 20% outdoor air. CO2 was released at the head of one manikin in each experiment to simulate small (<5 µm diameter) respiratory aerosols. The metric of exposure relative to perfectly mixed (ERM) is introduced to quantify impacts, based on measurements at manikin heads and at three heights in the center and corners of the room. Chilled or neutral supply air provided good mixing with ERMs close to one. Thermal stratification during heating produced higher ERMs at most manikins: 25% were ≥2.5 and the highest were >5× perfectly mixed conditions. Operation of two within-zone air cleaners together moving ≥400 cmh vertically in the room provided enough mixing to mitigate elevated exposure variations.


Assuntos
Poluição do Ar em Ambientes Fechados , Ventilação , Ar Condicionado , Movimentos do Ar , Calefação
4.
Indoor Air ; 31(5): 1625-1638, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33772881

RESUMO

The use of Ultraviolet Germicidal Irradiation (UVGI) devices in the upper zones of occupied buildings has gained increased attention as one of the most effective mitigation technologies for the transmission of COVID-19. To ensure safe and effective use of upper-room UVGI, it is necessary to devise a simulation technique that enables engineers, designers, and users to explore the impact of different design and operational parameters. We have developed a simulation technique for calculating UV-C fluence rate within the volume of the upper zone and planar irradiance in the lower occupied zone. Our method is based on established ray-tracing light simulation methods adapted to the UV-C wavelength range. We have included a case study of a typical hospital patient room. In it, we explored the impact of several design parameters: ceiling height, device location, room configuration, proportions, and surface materials. We present a spatially mapped parametric study of the UV-C irradiance distribution in three dimensions. We found that the ceiling height and mounting height of the UVGI fixtures combined can cause the largest variation (up to 22%) in upper zone fluence rate. One of the most important findings of this study is that it is crucial to consider interreflections in the room. This is because surface reflectance is the design parameter with the largest impact on the occupant exposure in the lower zone: Applying materials with high reflectance ratio in the upper portion of the room has the highest negative impact (over 700% variation) on increasing hot spots that may receive over 6 mJ/cm2 UV dose in the lower occupied zone.


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Desinfecção/métodos , Quartos de Pacientes , Análise Espacial , Raios Ultravioleta , COVID-19/prevenção & controle , Arquitetura de Instituições de Saúde , Humanos , SARS-CoV-2
5.
Indoor Air ; 31(2): 587-601, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32870542

RESUMO

Human activity is known to leave significant effects on indoor airflow patterns. These patterns are carefully designed for many facilities such as cleanrooms, pharmaceutical settings, and healthcare environments, where human-induced wakes contribute to the transport of contaminants. Therefore, the knowledge about these wakes as it relates to indoor air quality is critical. As a result, a series of experiments were conducted in a controlled chamber to study the three-dimensional effects of true human walking on airflow. Experiments were designed to capture the effect of human walking under three different flow conditions, and for two different walking schemes. The results show that the effect of walking on the airflow is not negligible and can sustain up to 10 seconds after the moving body has passed. Walking on a straight line creates significant change in the velocity normal to the walking path and vertical to the plane of walking movement. These changes were detectable till 1.0 m away from the walking track. Also, the similarity between airflow patterns of walking once and twice illustrated a promising opportunity of predicting the flow patterns of random walk from a set of base cases.


Assuntos
Movimentos do Ar , Poluição do Ar em Ambientes Fechados , Simulação por Computador , Humanos , Movimento , Fenômenos Fisiológicos Respiratórios , Caminhada
6.
Proc Natl Acad Sci U S A ; 115(5): 1081-1086, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29348203

RESUMO

Little is known about the amount and infectiousness of influenza virus shed into exhaled breath. This contributes to uncertainty about the importance of airborne influenza transmission. We screened 355 symptomatic volunteers with acute respiratory illness and report 142 cases with confirmed influenza infection who provided 218 paired nasopharyngeal (NP) and 30-minute breath samples (coarse >5-µm and fine ≤5-µm fractions) on days 1-3 after symptom onset. We assessed viral RNA copy number for all samples and cultured NP swabs and fine aerosols. We recovered infectious virus from 52 (39%) of the fine aerosols and 150 (89%) of the NP swabs with valid cultures. The geometric mean RNA copy numbers were 3.8 × 104/30-minutes fine-, 1.2 × 104/30-minutes coarse-aerosol sample, and 8.2 × 108 per NP swab. Fine- and coarse-aerosol viral RNA were positively associated with body mass index and number of coughs and negatively associated with increasing days since symptom onset in adjusted models. Fine-aerosol viral RNA was also positively associated with having influenza vaccination for both the current and prior season. NP swab viral RNA was positively associated with upper respiratory symptoms and negatively associated with age but was not significantly associated with fine- or coarse-aerosol viral RNA or their predictors. Sneezing was rare, and sneezing and coughing were not necessary for infectious aerosol generation. Our observations suggest that influenza infection in the upper and lower airways are compartmentalized and independent.


Assuntos
Microbiologia do Ar , Expiração , Influenza Humana/transmissão , Influenza Humana/virologia , Infecções Respiratórias/virologia , Aerossóis , Índice de Massa Corporal , Tosse , Feminino , Humanos , Masculino , Modelos Teóricos , Prevalência , RNA Viral/genética , Sistema Respiratório , Estações do Ano , Estudantes , Temperatura , Universidades , Vacinação , Adulto Jovem
7.
Appl Energy ; 292: 116848, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33776191

RESUMO

Radiant cooling-assisted natural ventilation is an innovative technical approach that combines new radiant cooling technology with natural ventilation to increase fresh air delivery into buildings year-round with minimal energy cost and improvment of air quality. Currently, the standard paradigm for HVAC (heating, ventilation and air conditioning) is based on central air systems that tie the delivery of heating and cooling to the delivery of fresh air. To prevent heat loss, the delivery of fresh air must be tightly controlled and is often limited through recirculation of already heated or cooled air. Buildings are designed with airtight envelopes, which do not allow for natural ventilation, and depend on energy-intensive central-air systems. As closed environments, buildings have become sites of rapid COVID-19 transmission. In this research, we demonstrate the energy cost of increasing outdoor air supply with standard systems per COVID-19 recommendations and introduce an alternative HVAC paradigm that maximizes the decoupling of ventilation and thermal control. We first consider a novel analysis of the energy costs of increasing the amount of conditioned fresh air using standard HVAC systems to address COVID-19 concerns. We then present an alternative that includes a novel membrane-assisted radiant system we have studied for cooling in humid climates, in place of an air conditioning system. The proposed system can work in conjunction with natural ventilation and thus decreases the risk of indoor spread of infectious diseases and significantly lowers energy consumption in buildings. Our results for modeling HVAC energy in different climates show that increasing outdoor air in standard systems can double cooling costs, while increasing natural ventilation with radiant systems can halve costs. More specifically, it is possible to add up to 100 days' worth of natural ventilation while saving energy when coupling natural ventilation and radiant systems. This combination decreases energy costs by 10-45% in 60 major cities globally, while increasing fresh air intake.

8.
Indoor Air ; 30(5): 955-965, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32304116

RESUMO

Singapore is a tropical country with a high density of day-care facilities whose indoor environments may be adversely affected by outdoor fine particle (PM2.5 ) air pollution. To reduce this problem requires effective, evidence-based exposure-reduction strategies. Little information is available on the penetration of outdoor PM2.5 into day-care environments. Our study attempted to address the following objectives: to measure indoor infiltration factor (Finf ) of PM2.5 from outdoor PM2.5 and to determine the building parameters that modify the indoor PM2.5 . We collected indoor/outdoor 1-min PM2.5 from 50 day-care classrooms. We noted mean Finf  ± SD of 0.65 ± 0.22 in day-care rooms which are naturally ventilated and lower Finf  ± SD values of 0.47 ± 0.18 for those that are air-conditioned: values which are lower than those reported in Singapore residences. The air exchange rates were higher in naturally ventilated rooms (1.47 vs 0.86 h-1 ). However, fine particle deposition rates were lower for naturally ventilated rooms (0.67 ± 0.43 h-1 ) compared with air-conditioned ones (1.03 ± 0.55 h-1 ) presumably due to composite rates linked to the filters within the split unit air-conditioners, higher recirculation rates, and interior surfaces in the latter. Our findings indicate that children remaining indoor in daycares where air-conditioning is used can reduce their PM2.5 exposures during outdoor pollution episodes.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Creches/estatística & dados numéricos , Material Particulado/análise , Criança , Habitação , Humanos , Tamanho da Partícula , Singapura
9.
Sci Total Environ ; 927: 172126, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569949

RESUMO

There is a knowledge gap in understanding how existing office buildings are protecting occupants from exposure to particles from both indoor and outdoor sources. We report a cross-sectional study involving weekly measurements of size-resolved indoor and outdoor particle concentrations in forty commercial building offices in Singapore. The outdoor and indoor particles size distributions were single mode with daytime peak number concentrations at 36.5 nm and 48.7 nm. Outdoor concentrations were significantly greater than indoors for all particle diameters. Indoor particle concentrations were generally low due to: 1) relatively high indoor particle removal (IPR) rates; 2) low indoor source strengths; and 3) low indoor particle of outdoor proportion (IPOP). We found that the ventilation system type had a substantial effect on indoor particle levels, IPR and IPOP. Through linear mixed model analyses, we identified dependencies of IPR rates with the use of MERV13 filters in supply air and filter maintenance frequency, IPOP with the use of MERV13 filters in the fresh air and supply air ducts and low particle source strength with regular daily cleaning presumably due to dust reservoir removal. Lastly, the contribution of outdoor sources was mainly seen for ultrafine and fine particles but less pronounced for coarse particles. This study provided detailed understanding of particle exposure in building offices and their influencing factors, facilitating future research on health impact of particle exposures.

10.
Energy Build ; 55: 118-126, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32288123

RESUMO

This paper discusses the issue of selecting the design solution that best accords with an articulated preference of multiple criteria with an acceptable performance band. The application of a newly developed multi-criteria decision-making tool called RR-PARETO2 is presented. An example of HVAC design is used to illustrate how solutions could be selected within a multi-criteria optimization framework. In this example, five criteria have been selected, namely, power consumption, thermal comfort, risk of airborne infection of influenza and tuberculosis and effective differential temperature (Δt eq) of body parts. The goal is to select the optimal air exchange rate that makes reasonable trade-offs among all the objectives. Two scenarios have been studied. In the first scenario, there is an influenza outbreak and the important objective is to prevent the spread of infection. In the second scenario, energy prices are high and the primary objective is to reduce energy. In both scenarios, RR-PARETO2 algorithm selects solutions that make reasonable trade-offs among conflicting objectives. The example illustrates how objectives such as reduction of airborne disease transmission and maximizing thermal comfort can be incorporated in the design of a practical, full-scale HVAC system.

11.
Sci Rep ; 12(1): 6473, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440747

RESUMO

It is widely accepted that most people spend the majority of their lives indoors. Most individuals do not realize that while indoors, roughly half of heat exchange affecting their thermal comfort is in the form of thermal infrared radiation. We show that while researchers have been aware of its thermal comfort significance over the past century, systemic error has crept into the most common evaluation techniques, preventing adequate characterization of the radiant environment. Measuring and characterizing radiant heat transfer is a critical component of both building energy efficiency and occupant thermal comfort and productivity. Globe thermometers are typically used to measure mean radiant temperature (MRT), a commonly used metric for accounting for the radiant effects of an environment at a point in space. In this paper we extend previous field work to a controlled laboratory setting to (1) rigorously demonstrate that existing correction factors used in the American Society of Heating Ventilation and Air-conditioning Engineers (ASHRAE) Standard 55 or ISO7726 for using globe thermometers to quantify MRT are not sufficient; (2) develop a correction to improve the use of globe thermometers to address problems in the current standards; and (3) show that mean radiant temperature measured with ping-pong ball-sized globe thermometers is not reliable due to a stochastic convective bias. We also provide an analysis of the maximum precision of globe sensors themselves, a piece missing from the domain in contemporary literature.


Assuntos
Convecção , Termômetros , Temperatura Corporal , Calefação , Temperatura Alta , Humanos , Temperatura
12.
Influenza Other Respir Viruses ; 15(1): 154-163, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32705798

RESUMO

BACKGROUND: It has long been known that nasal inoculation with influenza A virus produces asymptomatic to febrile infections. Uncertainty persists about whether these infections are sufficiently similar to natural infections for studying human-to-human transmission. METHODS: We compared influenza A viral aerosol shedding from volunteers nasally inoculated with A/Wisconsin/2005 (H3N2) and college community adults naturally infected with influenza A/H3N2 (2012-2013), selected for influenza-like illness with objectively measured fever or a positive Quidel QuickVue A&B test. Propensity scores were used to control for differences in symptom presentation observed between experimentally and naturally infected groups. RESULTS: Eleven (28%) experimental and 71 (86%) natural cases shed into fine particle aerosols (P < .001). The geometric mean (geometric standard deviation) for viral positive fine aerosol samples from experimental and natural cases was 5.1E + 3 (4.72) and 3.9E + 4 (15.12) RNA copies/half hour, respectively. The 95th percentile shedding rate was 2.4 log10 greater for naturally infected cases (1.4E + 07 vs 7.4E + 04). Certain influenza-like illness-related symptoms were associated with viral aerosol shedding. The almost complete lack of symptom severity distributional overlap between groups did not support propensity score-adjusted shedding comparisons. CONCLUSIONS: Due to selection bias, the natural and experimental infections had limited symptom severity distributional overlap precluding valid, propensity score-adjusted comparison. Relative to the symptomatic naturally infected cases, where high aerosol shedders were found, experimental cases did not produce high aerosol shedders. Studying the frequency of aerosol shedding at the highest observed levels in natural infections without selection on symptoms or fever would support helpful comparisons.


Assuntos
Vírus da Influenza A , Influenza Humana , Adulto , Aerossóis , Humanos , Vírus da Influenza A Subtipo H3N2 , Eliminação de Partículas Virais
13.
Sci Rep ; 10(1): 2652, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060327

RESUMO

For thermal comfort research, globe thermometers have become the de facto tool for mean radiant temperature, tr, measurement. They provide a quick means to survey the radiant environment in a space with nearly a century of trials to reassure researchers. However, as more complexity is introduced to built environments, we must reassess the accuracy of globe measurements. In particular, corrections for globe readings taking wind into account rely on a forced convection heat transfer coefficient. In this study, we investigate potential errors introduced by buoyancy driven flow, or free convection, induced by radiant forcing of a black globe's surface to a temperature different from the air. We discovered this error in an experimental radiant cooling system with high separation of air to radiant temperature. Empirical simulations and the data collected in a radiant cooling setup together demonstrate the influence of free convection on the instrument's readings. Initial simulation and data show that tr measurements neglecting free convection when calculating tr from air temperatures of 2 K above tr could introduce a mechanism for globe readings to incorrectly track air temperatures. The experimental data constructed to test this hypothesis showed the standard correction readings are 1.94 ± 0.90 °C higher than the ground truth readings for all measurements taken in the experiment. The proposed mixed convection correction is 0.51 ± 1.07 °C higher than the ground truth, and is most accurate at low air speeds, within 0.25 ± 0.60 °C. This implies a potential systematic error in millions of measurements over the past 30 years of thermal comfort research. Future work will be carried out to experimentally validate this framework in a controlled climate chamber environment, examining the tradeoffs between accuracy and precision with globe thermometer measurements.

14.
J Expo Sci Environ Epidemiol ; 30(2): 328-337, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31636369

RESUMO

Inhalation exposure to pure and metabolic elevated carbon dioxide (CO2) concentration has been associated with impaired work performance, lower perceived air quality, and increased health symptoms. In this study, the concentration of metabolic CO2 was continuously measured in the inhalation zone of 41 subjects performing simulated office work. The measurements took place in an environmental chamber with well-controlled mechanical ventilation arranged as an office environment. The results showed the existence of a personal CO2 cloud in the inhalation zone of all test subjects, characterized by the excess of metabolic CO2 beyond the room background levels. For seated occupants, the median CO2 inhalation zone concentration levels were between 200 and 500 ppm above the background, and the third quartile up to 800 ppm above the background. Each study subject had distinct magnitude of the personal CO2 cloud owing to differences in metabolic CO2 generation, posture, nose geometry, and breathing pattern. A small desktop oscillating fan proved to be suitable for dispersing much of the personal CO2 cloud, thus reducing the inhalation zone concentration to background level. The results suggest that background measurements cannot capture the significant personal CO2 cloud effect in human microclimate.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Dióxido de Carbono/análise , Exposição por Inalação/estatística & dados numéricos , Local de Trabalho , Adulto , Poluição do Ar , Poluição do Ar em Ambientes Fechados/análise , Coleta de Dados , Feminino , Humanos , Exposição por Inalação/análise , Masculino , Ventilação
15.
PLoS One ; 14(10): e0223136, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31618240

RESUMO

Wildfires and associated emissions of particulate matter pose significant environmental and health concerns. In this study we propose tools to evaluate building resilience to extreme episodes of outdoor particulate matter using a combination of indoor and outdoor IoT measurements, coupled with survey-based information of occupants' perception and behaviour. We demonstrated the application of the tools on two buildings with different modes of ventilation during the Chico Camp fire event. We characterized the resilience of the buildings on different temporal and spatial scales using the well-established I/O ratio and a newly proposed E-index that evaluates indoor concentration in the context of adopted 24-hour exposure thresholds. Indoor PM2.5 concentration during the entire Chico Camp Fire event was 21 µg/m3 for 4th Street (Mechanically Ventilated) and 36 µg/m3 for Wurster Hall (Naturally Ventilated). The cumulative median I/O ratio during the fire event was 0.27 for 4th Street and 0.67 for Wurster Hall. Overall E-index for 4th Street was 0.82, suggesting that the whole building was resilient to outdoor air pollution while overall E-index was 1.69 for Wurster Hall suggesting that interventions are necessary. The survey revealed that occupant perception of workplace air quality aligns with measured PM2.5 in the two buildings. The results also highlight that a large portion of occupants wore face masks, even though the PM2.5 concentration was below WHO threshold level. The results of our study demonstrate the utility of the proposed IoT-enabled and survey tools to assess the degree of protection from air pollution of outdoor origin for a single building or across a portfolio of buildings. The proposed survey tool also provides direct links between the PM2.5 levels and occupants' perception and behavior.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Exposição Ocupacional/efeitos adversos , Material Particulado/análise , Incêndios Florestais , Poluentes Atmosféricos/normas , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Humanos , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/normas , Tamanho da Partícula , Material Particulado/normas , Análise Espaço-Temporal , Inquéritos e Questionários/estatística & dados numéricos , Níveis Máximos Permitidos , Local de Trabalho/normas
16.
PLoS One ; 14(11): e0225492, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725796

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0223136.].

17.
J Infect Public Health ; 11(5): 631-635, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29526441

RESUMO

BACKGROUND: Operating rooms (ORs) are usually over-pressurized in order to prevent the penetration of contaminated air and the consequent risk of surgical site infection. However, a door-opening can result in the rapid disappearance of pressure and contaminants can then easily penetrate into the surgical zone. Therefore, a broad knowledge and understanding of OR ventilation systems and their protective potential is essential for optimizing the surgical environment. OBJECTIVES: This study investigated the air quality and level of airborne particles during a single and multiple door-opening cycles in an operating room supplied by a turbulent-mixing ventilation system. METHODS: The exploration was carried out numerically using computational fluid dynamics. Model validation was performed to ensure the validity of the achieved results. The OR was initially over-pressurized by approximately 15Pa, relative to the adjacent corridors. Both sliding and hinged doors were simulated and compared. RESULTS: Penetration of bacteria carrying particles from the corridors to the OR can be successfully restricted by using a positive-pressure system. However, the results clearly indicate that frequent door opening can interfere with airflow ventilation systems, alter the pressure gradient, and increase the infection risk for the patient undergoing surgical intervention. Door-opening disturbs the airflow field and could result in containment failure.


Assuntos
Salas Cirúrgicas , Material Particulado , Pressão do Ar , Simulação por Computador , Humanos , Ventilação/métodos
18.
PLoS One ; 9(9): e107338, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25208000

RESUMO

Two independent studies by two separate research teams (from Hong Kong and Singapore) failed to detect any influenza RNA landing on, or inhaled by, a life-like, human manikin target, after exposure to naturally influenza-infected volunteers. For the Hong Kong experiments, 9 influenza-infected volunteers were recruited to breathe, talk/count and cough, from 0.1 m and 0.5 m distance, onto a mouth-breathing manikin. Aerosolised droplets exhaled from the volunteers and entering the manikin's mouth were collected with PTFE filters and an aerosol sampler, in separate experiments. Virus detection was performed using an in-house influenza RNA reverse-transcription polymerase chain reaction (RT-PCR) assay. No influenza RNA was detected from any of the PTFE filters or air samples. For the Singapore experiments, 6 influenza-infected volunteers were asked to breathe (nasal/mouth breathing), talk (counting in English/second language), cough (from 1 m/0.1 m away) and laugh, onto a thermal, breathing manikin. The manikin's face was swabbed at specific points (around both eyes, the nostrils and the mouth) before and after exposure to each of these respiratory activities, and was cleaned between each activity with medical grade alcohol swabs. Shadowgraph imaging was used to record the generation of these respiratory aerosols from the infected volunteers and their impact onto the target manikin. No influenza RNA was detected from any of these swabs with either team's in-house diagnostic influenza assays. All the influenza-infected volunteers had diagnostic swabs taken at recruitment that confirmed influenza (A/H1, A/H3 or B) infection with high viral loads, ranging from 10(5)-10(8) copies/mL (Hong Kong volunteers/assay) and 10(4)-10(7) copies/mL influenza viral RNA (Singapore volunteers/assay). These findings suggest that influenza RNA may not be readily transmitted from naturally-infected human source to susceptible recipients via these natural respiratory activities, within these exposure time-frames. Various reasons are discussed in an attempt to explain these findings.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/genética , Influenza Humana/virologia , Modelos Anatômicos , RNA Viral/genética , Adolescente , Adulto , Tosse , Expiração , Feminino , Hong Kong , Humanos , Influenza Humana/transmissão , Masculino , Pessoa de Meia-Idade , RNA Viral/isolamento & purificação , Respiração , Singapura , Carga Viral
19.
Aerosol Sci Technol ; 47(4): 444-451, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23418400

RESUMO

The importance of the aerosol mode for transmission of influenza is unknown. Understanding the role of aerosols is essential to developing public health interventions such as the use of surgical masks as a source control to prevent the release of infectious aerosols. Little information is available on the number and size of particles generated by infected persons, which is partly due to the limitations of conventional air samplers, which do not efficiently capture fine particles or maintain microorganism viability. We designed and built a new sampler, called the G-II, that collects exhaled breath particles that can be used in infectivity analyses. The G-II allows test subjects to perform various respiratory maneuvers (i.e. tidal breathing, coughing, and talking) and allows subjects to wear a mask or respirator during testing. A conventional slit impactor collects particles > 5.0 µm. Condensation of water vapor is used to grow remaining particles, including fine particles, to a size large enough to be efficiently collected by a 1.0 µm slit impactor and be deposited into a buffer-containing collector. We evaluated the G-II for fine particle collection efficiency with inert particle aerosols and evaluated infective virus collection using influenza A virus aerosols. Testing results showed greater than 85% collection efficiency for particles greater than 50nm and influenza virus collection comparable with a reference SKC BioSampler®. The new design will enable determination of exhaled infectious virus generation rate and evaluate control strategies such as wearing a surgical type mask to prevent the release of viruses from infected persons.

20.
PLoS One ; 8(6): e66663, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826109

RESUMO

Hospital isolation rooms are vital for the containment (when under negative pressure) of patients with, or the protection (when under positive pressure) of patients, from airborne infectious agents. Such facilities were essential for the management of highly contagious patients during the 2003 severe acute respiratory syndrome (SARS) outbreaks and the more recent 2009 A/H1N1 influenza pandemic. Many different types of door designs are used in the construction of such isolation rooms, which may be related to the space available and affordability. Using colored food dye as a tracer, the qualitative effects of door-opening motions on the dissemination of potentially contaminated air into and out of a single isolation room were visualized and filmed using Reynolds-number-equivalent, small-scale, water-tank models fitted with programmable door-opening and moving human figure motions. Careful scaling considerations involved in the design and construction of these water-tank models enabled these results to be accurately extrapolated to the full-scale situation. Four simple types of door design were tested: variable speed single and double, sliding and hinged doors, in combination with the moving human figure. The resulting video footage was edited, synchronized and presented in a series of split-screen formats. From these experiments, it is clear that double-hinged doors pose the greatest risk of leakage into or out of the room, followed by (in order of decreasing risk) single-hinged, double-sliding and single-sliding doors. The relative effect of the moving human figure on spreading any potential contamination was greatest with the sliding doors, as the bulk airflows induced were large relative to those resulting from these door-opening motions. However, with the hinged doors, the airflows induced by these door-opening motions were significantly greater. Further experiments involving a simulated ventilated environment are required, but from these findings alone, it appears that sliding-doors are far more effective for hospital isolation room containment.


Assuntos
Hospitais , Controle de Infecções/instrumentação , Movimento (Física) , Isolamento de Pacientes , Quartos de Pacientes , Arquitetura Hospitalar , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA