Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 256: 114875, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059018

RESUMO

In this research, an attempt was made to produce safe food from lead-contaminated soil. It was assumed that an increased amount of calcium (Ca) in plants would prevent them from lead (Pb) uptake. A new-generation agricultural product - an activator of Ca transport in plants "InCa" (from Plant Impact) - was used. The study was conducted on several crop species, Cucumis sativus L., Linum usitatissimum L., Medicago sativa L. and Solanum lycopersicum L., cultivated in mineral medium. The leaves were sprayed with InCa activator while the roots received Pb from the substrate in the form of Pb(NO3)2 dissolved in the medium. It was shown that spraying the leaves with InCa reduced Pb concentration in the roots of S. lycopersicum to 73%, in C. sativus to 60%, and in L. usitatissimum to 57%. Finally, it was found that foliar application of InCa reduced the concentration of Pb in plant roots by 53%, and in plant shoots by 57% (on average by about 55%). These observations were confirmed using histochemical and electron microscopy techniques. It was shown that one of the InCa activator components - Ca(NO3)2 - is responsible for such effects. This result was verified by using another experimental method - the Allium epidermis test. Visualization of Pb in epidermal cells of Allium cepa. L. using the Leadmium™Green fluorescent probe (confocal microscopy) showed a reduction in the amount of Pb that entered the epidermal cells after the application of the tested solutions. For the first time, it was shown that it is possible to reduce Pb uptake by plants by up to 55%. In the future, this offers the possibility of developing a foliar calcium preparation aimed at lowering the concentration of Pb in plants and thereby reducing the amount of Pb in the food chain.


Assuntos
Chumbo , Poluentes do Solo , Chumbo/farmacologia , Cálcio/farmacologia , Transporte Biológico , Alimentos , Cebolas , Poluentes do Solo/análise , Raízes de Plantas , Biodegradação Ambiental
2.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902080

RESUMO

Tolerance to heavy metals in plants is a model process used to study adaptations to extremely unfavorable environments. One species capable of colonizing areas with high contents of heavy metals is Armeria maritima (Mill.) Wild. A. maritima plants growing in metalliferous areas differ in their morphological features and tolerance levels to heavy metals compared to individuals of the same species growing in non-metalliferous areas. The A. maritima adaptations to heavy metals occur at the organismal, tissue, and cellular levels (e.g., the retention of metals in roots, enrichment of the oldest leaves with metals, accumulation of metals in trichomes, and excretion of metals by salt glands of leaf epidermis). This species also undergoes physiological and biochemical adaptations (e.g., the accumulation of metals in vacuoles of the root's tannic cells and secretion of such compounds as glutathione, organic acids, or HSP17). This work reviews the current knowledge on A. maritima adaptations to heavy metals occurring in zinc-lead waste heaps and the species' genetic variation from exposure to such habitats. A. maritima is an excellent example of microevolution processes in plants inhabiting anthropogenically changed areas.


Assuntos
Adaptação Fisiológica , Metais Pesados , Plumbaginaceae , Poluentes do Solo , Zinco , Humanos , Metais Pesados/metabolismo , Plumbaginaceae/metabolismo , Poluentes do Solo/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA