Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 57(6): 1865-1875, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36315000

RESUMO

BACKGROUND: Three-dimensional (3D) multiecho balanced steady-state free precession (ME-bSSFP) has previously been demonstrated in preclinical hyperpolarized (HP) 13 C-MRI in vivo experiments, and it may be suitable for clinical metabolic imaging of prostate cancer (PCa). PURPOSE: To validate a signal simulation framework for the use of sequence parameter optimization. To demonstrate the feasibility of ME-bSSFP for HP 13 C-MRI in patients. To evaluate the metabolism in PCa measured by ME-bSSFP. STUDY TYPE: Retrospective single-center cohort study. PHANTOMS/POPULATION: Phantoms containing aqueous solutions of [1-13 C] lactate (2.3 M) and [13 C] urea (8 M). Eight patients (mean age 67 ± 6 years) with biopsy-confirmed Gleason 3 + 4 (n = 7) and 4 + 3 (n = 1) PCa. FIELD STRENGTH/SEQUENCES: 1 H MRI at 3 T with T2 -weighted turbo spin-echo sequence used for spatial localization and spoiled dual gradient-echo sequence used for B0 -field measurement. ME-bSSFP sequence for 13 C MR spectroscopic imaging with retrospective multipoint IDEAL metabolite separation. ASSESSMENT: The primary endpoint was the analysis of pyruvate-to-lactate conversion in PCa and healthy prostate regions of interest (ROIs) using model-free area under the curve (AUC) ratios and a one-directional kinetic model (kP ). The secondary objectives were to investigate the correlation between simulated and experimental ME-bSSFP metabolite signals for HP 13 C-MRI parameter optimization. STATISTICAL TESTS: Pearson correlation coefficients with 95% confidence intervals and paired t-tests. The level of statistical significance was set at P < 0.05. RESULTS: Strong correlations between simulated and empirical ME-bSSFP signals were found (r > 0.96). Therefore, the simulation framework was used for sequence optimization. Whole prostate metabolic HP 13 C-MRI, observing the conversion of pyruvate into lactate, with a temporal resolution of 6 seconds was demonstrated using ME-bSSFP. Both assessed metrics resulted in significant differences between PCa (mean ± SD) (AUC = 0.33 ± 012, kP  = 0.038 ± 0.014) and healthy (AUC = 0.15 ± 0.10, kP  = 0.011 ± 0.007) ROIs. DATA CONCLUSION: Metabolic HP 13 C-MRI in the prostate using ME-bSSFP allows for differentiation between aggressive PCa and healthy tissue. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Neoplasias da Próstata , Ácido Pirúvico , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Estudos Retrospectivos , Estudos de Coortes , Neoplasias da Próstata/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Ácido Láctico
2.
NMR Biomed ; 34(11): e4587, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34240782

RESUMO

Diffusion MRI characteristics assessed by apparent diffusion coefficient (ADC) histogram analysis in head and neck squamous cell carcinoma (HNSCC) have been reported as helpful in classifying tumours based on diffusion characteristics. There is little reported on HNSCC lymph nodes classification by diffusion characteristics. The aim of this study was to determine whether pretreatment nodal microstructural diffusion MRI characteristics can classify diseased nodes of patients with HNSCC from normal nodes of healthy volunteers. Seventy-nine patients with histologically confirmed HNSCC prior to chemoradiotherapy, and eight healthy volunteers, underwent diffusion-weighted (DW) MRI at a 1.5-T MR scanner. Two radiologists contoured lymph nodes on DW (b = 300 s/m2 ) images. ADC, distributed diffusion coefficient (DDC) and alpha (α) values were calculated by monoexponential and stretched exponential models. Histogram analysis metrics of drawn volume were compared between patients and volunteers using a Mann-Whitney test. The classification performance of each metric between the normal and diseased nodes was determined by receiver operating characteristic (ROC) analysis. Intraclass correlation coefficients determined interobserver reproducibility of each metric based on differently drawn ROIs by two radiologists. Sixty cancerous and 40 normal nodes were analysed. ADC histogram analysis revealed significant differences between patients and volunteers (p ≤0.0001 to 0.0046), presenting ADC distributions that were more skewed (1.49 for patients, 1.03 for volunteers; p = 0.0114) and 'peaked' (6.82 for patients, 4.20 for volunteers; p = 0.0021) in patients. Maximum ADC values exhibited the highest area under the curve ([AUC] 0.892). Significant differences were revealed between patients and volunteers for DDC and α value histogram metrics (p ≤0.0001 to 0.0044); the highest AUC were exhibited by maximum DDC (0.772) and the 25th percentile α value (0.761). Interobserver repeatability was excellent for mean ADC (ICC = 0.88) and the 25th percentile α value (ICC = 0.78), but poor for all other metrics. These results suggest that pretreatment microstructural diffusion MRI characteristics in lymph nodes, assessed by ADC and α value histogram analysis, can identify nodal disease.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Voluntários Saudáveis , Linfonodos/diagnóstico por imagem , Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Adulto , Idoso , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Curva ROC
3.
Eur Radiol ; 27(11): 4552-4562, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28396997

RESUMO

PURPOSE: To determine the test-retest repeatability of Apparent Diffusion Coefficient (ADC) measurements across institutions and MRI vendors, plus investigate the effect of post-processing methodology on measurement precision. METHODS: Thirty malignant lung lesions >2 cm in size (23 patients) were scanned on two occasions, using echo-planar-Diffusion-Weighted (DW)-MRI to derive whole-tumour ADC (b = 100, 500 and 800smm-2). Scanning was performed at 4 institutions (3 MRI vendors). Whole-tumour volumes-of-interest were copied from first visit onto second visit images and from one post-processing platform to an open-source platform, to assess ADC repeatability and cross-platform reproducibility. RESULTS: Whole-tumour ADC values ranged from 0.66-1.94x10-3mm2s-1 (mean = 1.14). Within-patient coefficient-of-variation (wCV) was 7.1% (95% CI 5.7-9.6%), limits-of-agreement (LoA) -18.0 to 21.9%. Lesions >3 cm had improved repeatability: wCV 3.9% (95% CI 2.9-5.9%); and LoA -10.2 to 11.4%. Variability for lesions <3 cm was 2.46 times higher. ADC reproducibility across different post-processing platforms was excellent: Pearson's R2 = 0.99; CoV 2.8% (95% CI 2.3-3.4%); and LoA -7.4 to 8.0%. CONCLUSION: A free-breathing DW-MRI protocol for imaging malignant lung tumours achieved satisfactory within-patient repeatability and was robust to changes in post-processing software, justifying its use in multi-centre trials. For response evaluation in individual patients, a change in ADC >21.9% will reflect treatment-related change. KEY POINTS: • In lung cancer, free-breathing DWI-MRI produces acceptable images with evaluable ADC measurement. • ADC repeatability coefficient-of-variation is 7.1% for lung tumours >2 cm. • ADC repeatability coefficient-of-variation is 3.9% for lung tumours >3 cm. • ADC measurement precision is unaffected by the post-processing software used. • In multicentre trials, 22% increase in ADC indicates positive treatment response.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias Pulmonares/patologia , Estadiamento de Neoplasias/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC , Reprodutibilidade dos Testes , Carga Tumoral
5.
BJR Case Rep ; 9(6): 20220089, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37928705

RESUMO

Phaeochromocytomas (PCC) and paragangliomas (PGL), cumulatively referred to as PPGLs, are neuroendocrine tumours arising from neural crest-derived cells in the sympathetic and parasympathetic nervous systems. Predicting future tumour behaviour and the likelihood of metastatic disease remains problematic as genotype-phenotype correlations are limited, the disease has variable penetrance and, to date, no reliable molecular, cellular or histological markers have emerged. Tumour metabolism quantification can be considered as a method to delineating tumour aggressiveness by utilising hyperpolarised 13 C-MR (HP-MR). The technique may provide an opportunity to non-invasively characterise disease behaviour. Here, we present the first instance of the analysis of PPGL metabolism via HP-MR in a single case.

6.
BMJ Open ; 12(4): e059847, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396316

RESUMO

INTRODUCTION: Multiparametric MRI (mpMRI) is now widely used to risk stratify men with a suspicion of prostate cancer and identify suspicious regions for biopsy. However, the technique has modest specificity and a high false-positive rate, especially in men with mpMRI scored as indeterminate (3/5) or likely (4/5) to have clinically significant cancer (csPCa) (Gleason ≥3+4). Advanced MRI techniques have emerged which seek to improve this characterisation and could predict biopsy results non-invasively. Before these techniques are translated clinically, robust histological and clinical validation is required. METHODS AND ANALYSIS: This study aims to clinically validate two advanced MRI techniques in a prospectively recruited cohort of men suspected of prostate cancer. Histological analysis of men undergoing biopsy or prostatectomy will be used for biological validation of biomarkers derived from Vascular and Extracellular Restricted Diffusion for Cytometry in Tumours and Luminal Water imaging. In particular, prostatectomy specimens will be processed using three-dimension printed patient-specific moulds to allow for accurate MRI and histology mapping. The index tests will be compared with the histological reference standard to derive false positive rate and true positive rate for men with mpMRI scores which are indeterminate (3/5) or likely (4/5) to have clinically significant prostate cancer (csPCa). Histopathological validation from both biopsy and prostatectomy samples will provide the best ground truth in validating promising MRI techniques which could predict biopsy results and help avoid unnecessary biopsies in men suspected of prostate cancer. ETHICS AND DISSEMINATION: Ethical approval was granted by the London-Queen Square Research Ethics Committee (19/LO/1803) on 23 January 2020. Results from the study will be presented at conferences and submitted to peer-reviewed journals for publication. Results will also be available on ClinicalTrials.gov. TRIAL REGISTRATION NUMBER: NCT04792138.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Biomarcadores , Humanos , Biópsia Guiada por Imagem , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia
7.
Br J Radiol ; 95(1134): 20210770, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230136

RESUMO

OBJECTIVE: To develop a phantom system which can be integrated with an automated injection system, eliminating the experimental variability that arises with manual injection; for the purposes of pulse sequence testing and metric derivation in hyperpolarised 13C-MR. METHODS: The custom dynamic phantom was machined from Ultem and filled with a nicotinamide adenine dinucleotide and lactate dehydrogenase mixture dissolved in phosphate buffered saline. Hyperpolarised [1-13C]-pyruvate was then injected into the phantom (n = 8) via an automated syringe pump and the conversion of pyruvate to lactate monitored through a 13C imaging sequence. RESULTS: The phantom showed low coefficient of variation for the lactate to pyruvate peak signal heights (11.6%) and dynamic area-under curve ratios (11.0%). The variance for the lactate dehydrogenase enzyme rate constant (kP) was also seen to be low at 15.6%. CONCLUSION: The dynamic phantom demonstrates high reproducibility for quantification of 13C-hyperpolarised MR-derived metrics. Establishing such a phantom is needed to facilitate development of hyperpolarsed 13C-MR pulse sequenced; and moreover, to enable multisite hyperpolarised 13C-MR clinical trials where assessment of metric variability across sites is critical. ADVANCES IN KNOWLEDGE: The dynamic phantom developed during the course of this study will be a useful tool in testing new pulse sequences and standardisation in future hyperpolarised work.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Isótopos de Carbono , Humanos , Lactato Desidrogenases , Ácido Láctico , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Reprodutibilidade dos Testes
8.
Insights Imaging ; 12(1): 59, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932167

RESUMO

Prostate magnetic resonance imaging (MRI) of high diagnostic quality is a key determinant for either detection or exclusion of prostate cancer. Adequate high spatial resolution on T2-weighted imaging, good diffusion-weighted imaging and dynamic contrast-enhanced sequences of high signal-to-noise ratio are the prerequisite for a high-quality MRI study of the prostate. The Prostate Imaging Quality (PI-QUAL) score was created to assess the diagnostic quality of a scan against a set of objective criteria as per Prostate Imaging-Reporting and Data System recommendations, together with criteria obtained from the image. The PI-QUAL score is a 1-to-5 scale where a score of 1 indicates that all MR sequences (T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced sequences) are below the minimum standard of diagnostic quality, a score of 3 means that the scan is of sufficient diagnostic quality, and a score of 5 implies that all three sequences are of optimal diagnostic quality. The purpose of this educational review is to provide a practical guide to assess the quality of prostate MRI using PI-QUAL and to familiarise the radiologist and all those involved in prostate MRI with this scoring system. A variety of images are also presented to demonstrate the difference between suboptimal and good prostate MR scans.

9.
Insights Imaging ; 12(1): 52, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33877459

RESUMO

OBJECTIVES: National guidelines recommend prostate multiparametric (mp) MRI in men with suspected prostate cancer before biopsy. In this study, we explore prostate mpMRI protocols across 14 London hospitals and determine whether standardisation improves diagnostic quality. METHODS: An MRI physicist facilitated mpMRI set-up across several regional hospitals, working together with experienced uroradiologists who judged diagnostic quality. Radiologists from the 14 hospitals participated in the assessment and optimisation of prostate mpMRI image quality, assessed according to both PiRADSv2 recommendations and on the ability to "rule in" and/or "rule out" prostate cancer. Image quality and sequence parameters of representative mpMRI scans were evaluated across 23 MR scanners. Optimisation visits were performed to improve image quality, and 2 radiologists scored the image quality pre- and post-optimisation. RESULTS: 20/23 mpMRI protocols, consisting of 111 sequences, were optimised by modifying their sequence parameters. Pre-optimisation, only 15% of T2W images were non-diagnostic, whereas 40% of ADC maps, 50% of high b-value DWI and 41% of DCE-MRI were considered non-diagnostic. Post-optimisation, the scores were increased with 80% of ADC maps, 74% of high b-value DWI and 88% of DCE-MRI to be partially or fully diagnostic. T2W sequences were not optimised, due to their higher baseline quality scores. CONCLUSIONS: Targeted intervention at a regional level can improve the diagnostic quality of prostate mpMRI protocols, with implications for improving prostate cancer detection rates and targeted biopsies.

10.
BJR Case Rep ; 5(3): 20190026, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31555479

RESUMO

Hyperpolarised 13C MRI (HP-MRI) is a novel imaging technique that allows real-time analysis of metabolic pathways in vivo.1 The technology to conduct HP-MRI in humans has recently become available and is starting to be clinically applied. As knowledge of molecular biology advances, it is increasingly apparent that cancer cell metabolism is related to disease outcomes, with lactate attracting specific attention. 2 Recent reviews of breast cancer screening programs have raised concerns and increased public awareness of over treatment. The scientific community needs to shift focus from improving cancer detection alone to pursuing novel methods of distinguishing aggressive breast cancers from those which will remain indolent. HP-MRI offers the opportunity to identify aggressive tumour phenotypes and help monitor/predict therapeutic response. Here we report one of the first cases of breast cancer imaged using HP-MRI alongside correlative conventional imaging, including breast MRI.

11.
BJR Case Rep ; 5(3)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31428445

RESUMO

Intratumoral genetic heterogeneity and the role of metabolic reprogramming in renal cell carcinoma (RCC) have been extensively documented. However, the distribution of these metabolic changes within the tissue has not been explored. We report on the first-in-human in vivo non-invasive metabolic interrogation of RCC using hyperpolarized carbon-13 (13C) magnetic resonance imaging (HP-MRI) and describe the validation of in vivo lactate metabolic heterogeneity against multi-regional ex vivo mass spectrometry. HP-MRI provides an in vivo assessment of metabolism and provides a novel opportunity to safely and non-invasively assess cancer heterogeneity.

12.
Med Phys ; 43(6): 2998-3007, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27277048

RESUMO

PURPOSE: Diffusion-weighted (DW) and dynamic contrast-enhanced magnetic resonance imaging (MRI) are increasingly applied for the assessment of functional tissue biomarkers for diagnosis, lesion characterization, or for monitoring of treatment response. However, these techniques are vulnerable to the influence of various factors, so there is a necessity for a standardized MR quality assurance procedure utilizing a phantom to facilitate the reliable estimation of repeatability of these quantitative biomarkers arising from technical factors (e.g., B1 variation) affecting acquisition on scanners of different vendors and field strengths. The purpose of this study is to present a novel phantom designed for use in quality assurance for multicenter trials, and the associated repeatability measurements of functional and quantitative imaging protocols across different MR vendors and field strengths. METHODS: A cylindrical acrylic phantom was manufactured containing 7 vials of polyvinylpyrrolidone (PVP) solutions of different concentrations, ranging from 0% (distilled water) to 25% w/w, to create a range of different MR contrast parameters. Temperature control was achieved by equilibration with ice-water. Repeated MR imaging measurements of the phantom were performed on four clinical scanners (two at 1.5 T, two at 3.0 T; two vendors) using the same scanning protocol to assess the long-term and short-term repeatability. The scanning protocol consisted of DW measurements, inversion recovery (IR) T1 measurements, multiecho T2 measurement, and dynamic T1-weighted sequence allowing multiple variable flip angle (VFA) estimation of T1 values over time. For each measurement, the corresponding calculated parameter maps were produced. On each calculated map, regions of interest (ROIs) were drawn within each vial and the median value of these voxels was assessed. For the dynamic data, the autocorrelation function and their variance were calculated; for the assessment of the repeatability, the coefficients of variation (CoV) were calculated. RESULTS: For both field strengths across the available vendors, the apparent diffusion coefficient (ADC) at 0 °C ranged from (1.12 ± 0.01) × 10(-3) mm(2)/s for pure water to (0.48 ± 0.02) × 10(-3) mm(2)/s for the 25% w/w PVP concentration, presenting a minor variability between the vendors and the field strengths. T2 and IR-T1 relaxation time results demonstrated variability between the field strengths and the vendors across the different acquisitions. Moreover, the T1 values derived from the VFA method exhibited a large variation compared with the IR-T1 values across all the scanners for all repeated measurements, although the calculation of the standard deviation of the VFA-T1 estimate across each ROI and the autocorrelation showed a stability of the signal for three scanners, with autocorrelation of the signal over the dynamic series revealing a periodic variation in one scanner. Finally, the ADC, the T2, and the IR-T1 values exhibited an excellent repeatability across the scanners, whereas for the dynamic data, the CoVs were higher. CONCLUSIONS: The combination of a novel PVP phantom, with multiple compartments to give a physiologically relevant range of ADC and T1 values, together with ice-water as a temperature-controlled medium, allows reliable quality assurance measurements that can be used to measure agreement between MRI scanners, critical in multicenter functional and quantitative imaging studies.

13.
Phys Med ; 29(5): 453-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23375524

RESUMO

The aim of this study is to dosimetrically characterize a new MRI based polymer gel system and to evaluate its usefulness in clinical practice just in terms of beam profile measurements. Normoxic N-vinylpyrrolidone based polymer gel (VIPET) phantoms were produced and used in order to perform three main sets of experiments: a) dose-response evaluation and reproducibility experiments, b) experiments for the evaluation of sensitivity of dose characteristics on 'gel manufacture - irradiation' time interval and c) experiments for the evaluation of sensitivity of dose characteristics on 'irradiation - MRscanning' time interval. It has been shown that this gel system can be used in a wide dose-range of 0-60 Gy. It exhibits a linear dose-response in the dose-range of 2-35 Gy. Following the proposed manufacturing method the dose-response characteristics are reproducible. Moreover, it seems that the optimum 'gel manufacturing - irradiation' time interval is 1 day. However, a 'gel manufacturing - irradiation' time interval up to ∼1 week can be safely used. The optimum 'irradiation - MRscanning' time interval in terms of dose-response sensitivity and dose resolution can be reliably ranged from 1 day to 3 weeks. Finally, X-ray beam profile gel-measurements were performed and found to be in satisfying agreement with corresponding small sensitive volume ion chamber measurements. VIPET gel dosimeters preserved the spatial integrity of the dose distribution during a time period of 50 days post-irradiation. The studied gel system can be safely used in clinical practice within the practical limitations found and described in this work.


Assuntos
Imagens de Fantasmas , Povidona/química , Radiometria/instrumentação , Calibragem , Géis , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Análise Espaço-Temporal , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA