Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ind Eng Chem Res ; 62(37): 15029-15035, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38356904

RESUMO

In this contribution, we present a high-fidelity dynamic model of an industrial dividing wall column and the application of explicit model predictive control for its regulation. Our study involves the separation of methyl methacrylate from a quaternary mixture. The process includes a dividing wall column coupled with a decanter, which results in highly concentrated methyl methacrylate and water streams from the middle side draw of the column and the decanter, respectively. An equation-oriented mathematical model of the process is developed and presented in detail, where non-ideal thermodynamic calculations are adopted to describe the complex nature of the component interactions. The operability of the process is enhanced by the synthesis and application of an explicit model predictive controller, which is used to track the purity specifications of the product. Our results demonstrate that the proposed modeling and control approach can be utilized for the optimal online operation of the studied system.

2.
Ind Eng Chem Res ; 60(23): 8493-8503, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34219916

RESUMO

Industrial process systems need to be optimized, simultaneously satisfying financial, quality and safety criteria. To meet all those potentially conflicting optimization objectives, multiobjective optimization formulations can be used to derive optimal trade-off solutions. In this work, we present a framework that provides the exact Pareto front of multiobjective mixed-integer linear optimization problems through multiparametric programming. The original multiobjective optimization program is reformulated through the well-established ϵ-constraint scalarization method, in which the vector of scalarization parameters is treated as a right-hand side uncertainty for the multiparametric program. The algorithmic procedure then derives the optimal solution of the resulting multiparametric mixed-integer linear programming problem as an affine function of the ϵ parameters, which explicitly generates the Pareto front of the multiobjective problem. The solution of a numerical example is analytically presented to exhibit the steps of the approach, while its practicality is shown through a simultaneous process and product design problem case study. Finally, the computational performance is benchmarked with case studies of varying dimensionality with respect to the number of objective functions and decision variables.

3.
Ind Eng Chem Res ; 59(37): 16357-16367, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-33041499

RESUMO

The construction and expansion of steam cracking plants and feedstock diversification have resulted in a significant demand for the numerical simulation and optimization of models to achieve molecular refining and intelligent manufacturing. However, the existing models cannot be widely applied in industrial practice because of the high computational expense, time-consumption, and data size requirements. In this paper, a high-performance optimization process, which integrates transfer learning and a heuristic algorithm, is proposed for the optimization of furnaces for various feedstocks. An effective transfer learning structure, based on motif feature of the reaction network, is designed and subsequent product distribution prediction program is compiled. Then a hybrid genetic algorithm and particle swarm optimization method is applied for the coil outlet temperature (COT) curve optimization using the derived prediction model, and the results are obtained for different pricing policies of products. The results are determined based on the weight coefficients of prices for different products, and could be further explained by the yield distribution pattern and reaction mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA