Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Infect Dis ; 208(2): 310-8, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23255566

RESUMO

There is a clear need for novel, effective therapeutic approaches to hemorrhagic fever due to filoviruses. Ebola virus hemorrhagic fever is associated with robust interferon (IFN)-α production, with plasma concentrations of IFN-α that greatly (60- to 100-fold) exceed those seen in other viral infections, but little IFN-ß production. While all of the type I IFNs signal through the same receptor complex, both quantitative and qualitative differences in biological activity are observed after stimulation of the receptor complex with different type I IFNs. Taken together, this suggested potential for IFN-ß therapy in filovirus infection. Here we show that early postexposure treatment with IFN-ß significantly increased survival time of rhesus macaques infected with a lethal dose of Ebola virus, although it failed to alter mortality. Early treatment with IFN-ß also significantly increased survival time after Marburg virus infection. IFN-ß may have promise as an adjunctive postexposure therapy in filovirus infection.


Assuntos
Doença pelo Vírus Ebola/tratamento farmacológico , Interferon beta/farmacologia , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/efeitos dos fármacos , Animais , Ebolavirus/efeitos dos fármacos , Feminino , Doença pelo Vírus Ebola/virologia , Humanos , Macaca mulatta , Masculino , Doença do Vírus de Marburg/virologia , Proteínas Recombinantes/farmacologia
2.
J Gen Virol ; 93(Pt 1): 159-164, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21940414

RESUMO

The public health threat of orthopoxviruses from bioterrorist attacks has prompted researchers to develop suitable animal models for increasing our understanding of viral pathogenesis and evaluation of medical countermeasures (MCMs) in compliance with the FDA Animal Efficacy Rule. We present an accessible intrabronchial cowpox virus (CPXV) model that can be evaluated under biosafety level-2 laboratory conditions. In this dose-ranging study, utilizing cynomolgus macaques, signs of typical orthopoxvirus disease were observed with the lymphoid organs, liver, skin (generally mild) and respiratory tract as target tissues. Clinical and histopathological evaluation suggests that intrabronchial CPXV recapitulated many of the features of monkeypox and variola virus, the causative agent of smallpox, infections in cynomolgus macaque models. These similarities suggest that CPXV infection in non-human primates should be pursued further as an alternative model of smallpox. Further development of the CPXV primate model, unimpeded by select agent and biocontainment restrictions, should facilitate the development of MCMs for smallpox.


Assuntos
Vírus da Varíola Bovina/patogenicidade , Varíola Bovina/virologia , Modelos Animais de Doenças , Macaca fascicularis , Animais , Contenção de Riscos Biológicos , Varíola Bovina/patologia , Vírus da Varíola Bovina/fisiologia , Humanos , Varíola/patologia , Varíola/virologia , Virulência
3.
J Virol ; 85(10): 4898-909, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21389129

RESUMO

Variola, the causative agent of smallpox, and the related monkeypox virus are both select agents that, if purposefully released, would cause public panic and social disruption. For this reason research continues in the areas of animal model and therapeutic development. Orthopoxviruses show a widely varying degree of host specificity, making development of accurate animal models difficult. In this paper, we demonstrate a novel respiratory infection technique that resulted in "classic" orthopox disease in nonhuman primates and takes the field of research one step closer to a better animal model.


Assuntos
Modelos Animais de Doenças , Monkeypox virus/patogenicidade , Mpox/patologia , Mpox/virologia , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Animais , Macaca fascicularis
4.
J Virol ; 85(5): 2112-25, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21147922

RESUMO

Monkeypox virus (MPXV) infection has recently expanded in geographic distribution and can be fatal in up to 10% of cases. The intravenous (i.v.) inoculation of nonhuman primates (NHPs) results in an accelerated fulminant disease course compared to that of naturally occurring MPXV infection in humans. Alternative routes of inoculation are being investigated to define an NHP model of infection that more closely resembles natural disease progression. Our goal was to determine if the intrabronchial (i.b.) exposure of NHPs to MPXV results in a systemic disease that better resembles the progression of human MPXV infection. Here, we compared the disease course following an i.v. or i.b. inoculation of NHPs with 10-fold serial doses of MPXV Zaire. Classical pox-like disease was observed in NHPs administered a high virus dose by either route. Several key events were delayed in the highest doses tested of the i.b. model compared to the timing of the i.v. model, including the onset of fever, lesion appearance, peak viremia, viral shedding in nasal and oral swabs, peak cytokine levels, and time to reach endpoint criteria. Virus distribution across 19 tissues was largely unaffected by the inoculation route at the highest doses tested. The NHPs inoculated by the i.b. route developed a viral pneumonia that likely exacerbated disease progression. Based on the observations of the delayed onset of clinical and virological parameters and endpoint criteria that may more closely resemble those of human MPXV infection, the i.b. MPXV model should be considered for the further investigation of viral pathogenesis and countermeasures.


Assuntos
Brônquios/virologia , Monkeypox virus/fisiologia , Mpox/transmissão , Mpox/virologia , Animais , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Modelos Animais de Doenças , Humanos , Injeções Intravenosas , Macaca fascicularis , Mpox/imunologia , Monkeypox virus/genética , Células Vero , Eliminação de Partículas Virais
5.
J Virol ; 85(20): 10605-16, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21849459

RESUMO

The search for a safe and efficacious vaccine for Ebola virus continues, as no current vaccine candidate is nearing licensure. We have developed (i) replication-competent, (ii) replication-deficient, and (iii) chemically inactivated rabies virus (RABV) vaccines expressing Zaire Ebola virus (ZEBOV) glycoprotein (GP) by a reverse genetics system based on the SAD B19 RABV wildlife vaccine. ZEBOV GP is efficiently expressed by these vaccine candidates and is incorporated into virions. The vaccine candidates were avirulent after inoculation of adult mice, and viruses with a deletion in the RABV glycoprotein had greatly reduced neurovirulence after intracerebral inoculation in suckling mice. Immunization with live or inactivated RABV vaccines expressing ZEBOV GP induced humoral immunity against each virus and conferred protection from both lethal RABV and EBOV challenge in mice. The bivalent RABV/ZEBOV vaccines described here have several distinct advantages that may speed the development of inactivated vaccines for use in humans and potentially live or inactivated vaccines for use in nonhuman primates at risk of EBOV infection in endemic areas.


Assuntos
Vacinas contra Ebola/imunologia , Vacina Antirrábica/imunologia , Animais , Anticorpos Antivirais/sangue , Encéfalo/virologia , Modelos Animais de Doenças , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/efeitos adversos , Vacinas contra Ebola/genética , Ebolavirus/genética , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Raiva/prevenção & controle , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/efeitos adversos , Vacina Antirrábica/genética , Vírus da Raiva/genética , Vírus da Raiva/imunologia , Doenças dos Roedores/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Virulência
6.
J Infect Dis ; 203(10): 1348-59, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21422476

RESUMO

Research on the pathogenesis and therapy of influenza and other emerging respiratory viral infections would be aided by methods that directly visualize pathophysiologic processes in patients and laboratory animals. At present, imaging of diseases, such as swine-origin H1N1 influenza, is largely restricted to chest radiograph and computed tomography (CT), which can detect pulmonary structural changes in severely ill patients but are more limited in characterizing the early stages of illness, differentiating inflammation from infection or tracking immune responses. In contrast, imaging modalities, such as positron emission tomography, single photon emission CT, magnetic resonance imaging, and bioluminescence imaging, which have become useful tools for investigating the pathogenesis of a range of disease processes, could be used to advance in vivo studies of respiratory viral infections in patients and animals. Molecular techniques might also be used to identify novel biomarkers of disease progression and to evaluate new therapies.


Assuntos
Doenças Transmissíveis Emergentes/diagnóstico por imagem , Influenza Humana/diagnóstico por imagem , Imagem Molecular/métodos , Doenças Transmissíveis Emergentes/virologia , Humanos , Influenza Humana/virologia , Radiografia , Cintilografia
7.
J Infect Dis ; 204(12): 1902-11, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22013221

RESUMO

Infection of nonhuman primates (NHPs) with monkeypox virus (MPXV) is currently being developed as an animal model of variola infection in humans. We used positron emission tomography and computed tomography (PET/CT) to identify inflammatory patterns as predictors for the outcome of MPXV disease in NHPs. Two NHPs were sublethally inoculated by the intravenous (IV) or intrabronchial (IB) routes and imaged sequentially using fluorine-18 fluorodeoxyglucose ((18)FDG) uptake as a nonspecific marker of inflammation/immune activation. Inflammation was observed in the lungs of IB-infected NHPs, and bilobular involvement was associated with morbidity. Lymphadenopathy and immune activation in the axillary lymph nodes were evident in IV- and IB-infected NHPs. Interestingly, the surviving NHPs had significant (18)FDG uptake in the axillary lymph nodes at the time of MPXV challenge with no clinical signs of illness, suggesting an association between preexisting immune activation and survival. Molecular imaging identified patterns of inflammation/immune activation that may allow risk assessment of monkeypox disease.


Assuntos
Progressão da Doença , Linfonodos/imunologia , Monkeypox virus/imunologia , Mpox/diagnóstico por imagem , Mpox/imunologia , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Animais , Axila , Brônquios/virologia , Modelos Animais de Doenças , Feminino , Fluordesoxiglucose F18 , Injeções Intravenosas , Pulmão/diagnóstico por imagem , Pulmão/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Macaca fascicularis , Masculino , Mpox/complicações , Necrose/diagnóstico por imagem , Necrose/patologia , Pneumonia/diagnóstico por imagem , Pneumonia/virologia
9.
Arch Virol ; 156(10): 1877-81, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21814864

RESUMO

Monkeypox virus (MPXV) causes a vesiculopustular rash illness resembling smallpox in humans and produces a similar disease in nonhuman primates. To enhance the ability of researchers to study experimental MPXV infections, we inserted a gene encoding green fluorescent protein (GFP) into Monkeypox virus Zaire-79. Wild-type and MPXV-GFP replicated with similar kinetics in cell culture and caused a similar disease when injected intravenously into cynomolgus macaques. In MPXV-GFP-infected animals, examination under fluorescent light facilitated the identification of skin lesions during disease development and internal sites of replication at necropsy. MPXV-GFP could improve the quantitative assessment of antiviral therapy and vaccine efficacy.


Assuntos
Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Macaca fascicularis , Monkeypox virus/fisiologia , Varíola/virologia , Animais , Proteínas de Fluorescência Verde/metabolismo , Humanos , Mpox/virologia , Monkeypox virus/genética
10.
PLoS Pathog ; 4(11): e1000225, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19043556

RESUMO

Ebola virus (EBOV) is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV) is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVDeltaG/ZEBOVGP) in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV). All six animals showed no evidence of illness associated with the VSVDeltaG/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV.


Assuntos
Vacinas contra Ebola/farmacologia , Hospedeiro Imunocomprometido , Estomatite Vesicular , Animais , Linfócitos T CD4-Positivos , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Vacinas contra Ebola/administração & dosagem , Vetores Genéticos , Macaca mulatta , Primatas , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Resultado do Tratamento , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA