Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 130: 105128, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35104615

RESUMO

Potency determination of potential skin sensitizers in humans is essential for quantitative risk assessment and proper risk management. SENS-IS is an in vitro test based on a reconstructed human skin model, that was developed to predict the hazard and potency of potential skin sensitizers. The performance of the SENS-IS assay in potency prediction for 174 materials was evaluated for this work. The potency used as a benchmark was determined based on the weight of evidence approach, by collectively considering all well-established test data, including human, animal, in chemico, in vitro, and in silico data. Based on this weight of evidence approach, the dataset was composed of 5, 19, 34, 54, and 38 extreme, strong, moderate, weak, and very weak sensitizers, respectively, as well as 24 non-sensitizers. SENS-IS provided good prediction of the skin sensitization potency for 85% of this dataset, with precise and approximate prediction on 46% and 39% of the 174 materials, respectively. Our evaluation showed that SENS-IS provides a good approximation of the skin sensitization potency.


Assuntos
Dermatite Alérgica de Contato/patologia , Irritantes/toxicidade , Modelos Biológicos , Alternativas aos Testes com Animais , Animais , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Reprodutibilidade dos Testes , Testes de Toxicidade
2.
Regul Toxicol Pharmacol ; 116: 104688, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32621976

RESUMO

The assessment of skin sensitization has evolved over the past few years to include in vitro assessments of key events along the adverse outcome pathway and opportunistically capitalize on the strengths of in silico methods to support a weight of evidence assessment without conducting a test in animals. While in silico methods vary greatly in their purpose and format; there is a need to standardize the underlying principles on which such models are developed and to make transparent the implications for the uncertainty in the overall assessment. In this contribution, the relationship between skin sensitization relevant effects, mechanisms, and endpoints are built into a hazard assessment framework. Based on the relevance of the mechanisms and effects as well as the strengths and limitations of the experimental systems used to identify them, rules and principles are defined for deriving skin sensitization in silico assessments. Further, the assignments of reliability and confidence scores that reflect the overall strength of the assessment are discussed. This skin sensitization protocol supports the implementation and acceptance of in silico approaches for the prediction of skin sensitization.


Assuntos
Alérgenos/toxicidade , Haptenos/toxicidade , Medição de Risco/métodos , Alternativas aos Testes com Animais , Animais , Simulação por Computador , Células Dendríticas/efeitos dos fármacos , Dermatite de Contato/etiologia , Humanos , Queratinócitos/efeitos dos fármacos , Linfócitos/efeitos dos fármacos
3.
Crit Rev Toxicol ; 48(5): 344-358, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29474128

RESUMO

Cosmetics Europe, the European Trade Association for the cosmetics and personal care industry, is conducting a multi-phase program to develop regulatory accepted, animal-free testing strategies enabling the cosmetics industry to conduct safety assessments. Based on a systematic evaluation of test methods for skin sensitization, five non-animal test methods (DPRA (Direct Peptide Reactivity Assay), KeratinoSensTM, h-CLAT (human cell line activation test), U-SENSTM, SENS-IS) were selected for inclusion in a comprehensive database of 128 substances. Existing data were compiled and completed with newly generated data, the latter amounting to one-third of all data. The database was complemented with human and local lymph node assay (LLNA) reference data, physicochemical properties and use categories, and thoroughly curated. Focused on the availability of human data, the substance selection resulted nevertheless resulted in a high diversity of chemistries in terms of physico-chemical property ranges and use categories. Predictivities of skin sensitization potential and potency, where applicable, were calculated for the LLNA as compared to human data and for the individual test methods compared to both human and LLNA reference data. In addition, various aspects of applicability of the test methods were analyzed. Due to its high level of curation, comprehensiveness, and completeness, we propose our database as a point of reference for the evaluation and development of testing strategies, as done for example in the associated work of Kleinstreuer et al. We encourage the community to use it to meet the challenge of conducting skin sensitization safety assessment without generating new animal data.


Assuntos
Cosméticos/efeitos adversos , Bases de Dados Factuais , Dermatite Alérgica de Contato/imunologia , Pele/imunologia , Alternativas aos Testes com Animais/métodos , Cosméticos/farmacologia , Dermatite Alérgica de Contato/etiologia , Humanos , Pele/efeitos dos fármacos
4.
Regul Toxicol Pharmacol ; 95: 227-235, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29580972

RESUMO

A previously published fragmentation method for making reliable negative in silico predictions has been applied to the problem of predicting skin sensitisation in humans, making use of a dataset of over 2750 chemicals with publicly available skin sensitisation data from 18 in vivo assays. An assay hierarchy was designed to enable the classification of chemicals within this dataset as either sensitisers or non-sensitisers where data from more than one in vivo test was available. The negative prediction approach was validated internally, using a 5-fold cross-validation, and externally, against a proprietary dataset of approximately 1000 chemicals with in vivo reference data shared by members of the pharmaceutical, nutritional, and personal care industries. The negative predictivity for this proprietary dataset was high in all cases (>75%), and the model was also able to identify structural features that resulted in a lower accuracy or a higher uncertainty in the negative prediction, termed misclassified and unclassified features respectively. These features could serve as an aid for further expert assessment of the negative in silico prediction.


Assuntos
Dermatite Alérgica de Contato , Haptenos , Medição de Risco/métodos , Animais , Simulação por Computador , Bases de Dados Factuais , Cobaias , Humanos , Camundongos
5.
J Appl Toxicol ; 37(8): 985-995, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28244128

RESUMO

Dermal contact with chemicals may lead to an inflammatory reaction known as allergic contact dermatitis. Consequently, it is important to assess new and existing chemicals for their skin sensitizing potential and to mitigate exposure accordingly. There is an urgent need to develop quantitative non-animal methods to better predict the potency of potential sensitizers, driven largely by European Union (EU) Regulation 1223/2009, which forbids the use of animal tests for cosmetic ingredients sold in the EU. A Nearest Neighbours in silico model was developed using an in-house dataset of 1096 murine local lymph node (LLNA) studies. The EC3 value (the effective concentration of the test substance producing a threefold increase in the stimulation index compared to controls) of a given chemical was predicted using the weighted average of EC3 values of up to 10 most similar compounds within the same mechanistic space (as defined by activating the same Derek skin sensitization alert). The model was validated using previously unseen internal (n = 45) and external (n = 103) data and accuracy of predictions assessed using a threefold error, fivefold error, European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) and Globally Harmonized System of Classification and Labelling of Chemicals (GHS) classifications. In particular, the model predicts the GHS skin sensitization category of compounds well, predicting 64% of chemicals in an external test set within the correct category. Of the remaining chemicals in the previously unseen dataset, 25% were over-predicted (GHS 1A predicted: GHS 1B experimentally) and 11% were under-predicted (GHS 1B predicted: GHS 1A experimentally). Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Dermatite Alérgica de Contato/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Modelos Biológicos , Preparações Farmacêuticas/química , Alternativas ao Uso de Animais , Animais , Simulação por Computador , Conjuntos de Dados como Assunto , Ensaio Local de Linfonodo , Camundongos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
6.
Toxicol In Vitro ; 79: 105298, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34902536

RESUMO

The U-SENS™ assay was developed to address the third key event of the skin sensitization adverse outcome pathway (AOP) and is described in OECD test guideline 442E, Annex II. A dataset of 68 fragrance ingredients comprised of 7 non-sensitizers and 61 sensitizers was tested in the U-SENS™ assay. The potential for fragrance ingredients to activate dendritic cells, measured by U-SENS™, was compared to the sensitization potential determined by weight of evidence (WoE) from historical data. Of the non-sensitizers, 4 induced CD86 cell surface marker ≥1.5-fold while 3 did not. Of the sensitizers, 50 were predicted to be positive in U-SENS™, while the remaining 11 were negative. Positive and negative predictive values (PPV and NPV) of U-SENS™ were 93% and 21%, respectively. No specific chemical property evaluated could account for misclassified ingredients. Assessment of parent and metabolite protein binding alerts in silico suggests that parent chemical metabolism may play a role in CD86 activation in U-SENS™. Combining the U-SENS™ assay in a "2 out of 3" defined approach with the direct peptide reactivity assay (DPRA) and KeratinoSens™ predicted sensitization hazard with PPV and NPV of 97% and 24%, respectively. Combining complementary in silico and in vitro methods to the U-SENS™ assay should be integrated to define the hazard classification of fragrance ingredients, since a single NAM cannot replace animal-based methods.


Assuntos
Perfumes/toxicidade , Valor Preditivo dos Testes , Testes de Toxicidade/métodos , Alérgenos , Alternativas aos Testes com Animais , Humanos , Células U937
7.
Dermatitis ; 28(5): 299-307, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28691948

RESUMO

BACKGROUND: The development of non-animal alternatives for skin sensitization potency prediction is dependent upon the availability of a sufficient dataset whose human potency is well characterized. Previously, establishment of basic categorization criteria for 6 defined potency categories, allowed 131 substances to be allocated into them entirely on the basis of human information. OBJECTIVES: To supplement the original dataset with an extended range of fragrance substances. METHODS: A more fully described version of the original criteria was used to assess 89 fragrance chemicals, allowing their allocation into one of the 6 potency categories. RESULTS: None of the fragrance substances were assigned to the most potent group, category 1, whereas 11 were category 2, 22 were category 3, 37 were category 4, and 19 were category 5. Although none were identified as non-sensitizing, note that substances in category 5 also do not pass the threshold for regulatory classification. CONCLUSIONS: The combined datasets of >200 substances placed into potency categories solely on the basis of human data provides an essential resource for the elaboration and evaluation of predictive non-animal methods.


Assuntos
Alérgenos/classificação , Alérgenos/toxicidade , Dermatite Alérgica de Contato/etiologia , Perfumes/classificação , Perfumes/toxicidade , Relação Dose-Resposta Imunológica , Humanos , Nível de Efeito Adverso não Observado , Testes do Emplastro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA