Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(3): e0193623, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376234

RESUMO

In the context of sustainable diet, the development of soy-based yogurt fermented with lactic acid bacteria is an attractive alternative to dairy yogurts. To decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during soy juice (SJ) fermentation, the whole genome of the strain CIRM-BIA865 (Ld865) was sequenced and annotated. Then Ld865 was used to ferment SJ. Samples were analyzed throughout fermentation for their cell number, carbohydrate, organic acid, free amino acid, and volatile compound contents. Despite acidification, the number of Ld865 cells did not rise, and microscopic observations revealed the elongation of cells from 3.6 µm (inoculation) to 36.9 µm (end of fermentation). This elongation was observed in SJ but not in laboratory-rich medium MRS. Using transcriptomic analysis, we showed that the biosynthesis genes of peptidoglycan and membrane lipids were stably expressed, in line with the cell elongation observed, whereas no genes implicated in cell division were upregulated. Among the main sugars available in SJ (sucrose, raffinose, and stachyose), Ld865 only used sucrose. The transcriptomic analysis showed that Ld865 implemented the two transport systems that it contains to import sucrose: a PTS system and an ABC transporter. To fulfill its nitrogen needs, Ld865 probably first consumed the free amino acids of the SJ and then implemented different oligopeptide transporters and proteolytic/peptidase enzymes. In conclusion, this study showed that Ld865 enables fast acidification of SJ, despite the absence of cell division, leads to a product rich in free amino acids, and also leads to the production of aromatic compounds of interest. IMPORTANCE: To reduce the environmental and health concerns related to food, an alternative diet is recommended, containing 50% of plant-based proteins. Soy juice, which is protein rich, is a relevant alternative to animal milk, for the production of yogurt-like products. However, soy "beany" and "green" off-flavors limit the consumption of such products. The lactic acid bacteria (LAB) used for fermentation can help to improve the organoleptic properties of soy products. But metabolic data concerning LAB adapted to soy juice are lacking. The aim of this study was, thus, to decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during fermentation of a soy juice, based on a multidisciplinary approach. This result will contribute to give tracks for a relevant selection of starter. Indeed, the improvement of the organoleptic properties of these types of products could help to promote plant-based proteins in our diet.


Assuntos
Lactobacillales , Lactobacillus delbrueckii , Animais , Fermentação , Lactobacillus/metabolismo , Lactobacillales/metabolismo , Aminoácidos/metabolismo , Glycine max , Sacarose/metabolismo , Lactobacillus delbrueckii/genética , Iogurte/microbiologia
2.
Food Microbiol ; 92: 103579, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950163

RESUMO

This study explores the production of polysaccharides (PS) in the strain Pf2289 of the food species Propionibacterium freudenreichii. Pf2289 presents characteristics atypical of the species: a molar-shaped morphotype upon plating, and cells strongly aggregative in liquid medium. When plating Pf2289, another morphotype was observed with a 4% frequency of appearance: round-shaped colonies, typical of the species. A clone was isolated, designated Pf456. No reversibility of Pf456 towards the molar-shaped morphotype was observed. Pf2289 was shown to produce a surface polysaccharide (PS) bound to the cell wall, mainly during the stationary growth phase. Meanwhile, Pf456 had lost the ability to produce the PS. AFM images of Pf2289 showed that entangled filaments spread over the whole surface of the bacteria, whereas Pf456 exhibited a smooth surface. Adhesion force maps, performed with concanavalin-A grafted probes, revealed twice as much adhesion of Pf2289 to concanavalin-A compared to Pf456. Furthermore, the length of PS molecules surrounding Pf2289 measured at least 7 µm, whereas it only reached 1 µm in Pf456. Finally, the presence of PS had a strong impact on adhesion properties: Pf2289 did not adhere to hydrophobic surfaces, whereas Pf456 showed strong adhesion.


Assuntos
Polissacarídeos/metabolismo , Propionibacterium freudenreichii/química , Propionibacterium freudenreichii/metabolismo , Aderência Bacteriana , Parede Celular/química , Parede Celular/metabolismo , Propionibacterium freudenreichii/crescimento & desenvolvimento , Propriedades de Superfície
3.
BMC Genomics ; 17(1): 1007, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27931189

RESUMO

BACKGROUND: Propionibacterium freudenreichii is an Actinobacterium widely used in the dairy industry as a ripening culture for Swiss-type cheeses, for vitamin B12 production and some strains display probiotic properties. It is reportedly a hardy bacterium, able to survive the cheese-making process and digestive stresses. RESULTS: During this study, P. freudenreichii CIRM-BIA 138 (alias ITG P9), which has a generation time of five hours in Yeast Extract Lactate medium at 30 °C under microaerophilic conditions, was incubated for 11 days (9 days after entry into stationary phase) in a culture medium, without any adjunct during the incubation. The carbon and free amino acids sources available in the medium, and the organic acids produced by the strain, were monitored throughout growth and survival. Although lactate (the preferred carbon source for P. freudenreichii) was exhausted three days after inoculation, the strain sustained a high population level of 9.3 log10 CFU/mL. Its physiological adaptation was investigated by RNA-seq analysis and revealed a complete disruption of metabolism at the entry into stationary phase as compared to exponential phase. CONCLUSIONS: P. freudenreichii adapts its metabolism during entry into stationary phase by down-regulating oxidative phosphorylation, glycolysis, and the Wood-Werkman cycle by exploiting new nitrogen (glutamate, glycine, alanine) sources, by down-regulating the transcription, translation and secretion of protein. Utilization of polyphosphates was suggested.


Assuntos
Adaptação Fisiológica , Propionibacterium freudenreichii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Meios de Cultura/química , Regulação para Baixo , Glicólise/genética , Concentração de Íons de Hidrogênio , Metaboloma , Fosforilação Oxidativa , Oxigênio/metabolismo , Propionibacterium freudenreichii/genética , Propionibacterium freudenreichii/crescimento & desenvolvimento , RNA Bacteriano/química , RNA Bacteriano/isolamento & purificação , RNA Bacteriano/metabolismo , Análise de Sequência de RNA
4.
Appl Environ Microbiol ; 82(15): 4641-4651, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27235433

RESUMO

UNLABELLED: Propionibacterium freudenreichii is used as a cheese-ripening starter and as a probiotic. Its reported physiological effects at the gut level, including modulation of bifidobacteria, colon epithelial cell proliferation and apoptosis, and intestinal inflammation, rely on active metabolism in situ Survival and activity are thus key factors determining its efficacy, creating stress adaptation and tolerance bottlenecks for probiotic applications. Growth media and growth conditions determine tolerance acquisition. We investigated the possibility of using sweet whey, a dairy by-product, to sustain P. freudenreichii growth. It was used at different concentrations (dry matter) as a culture medium. Using hyperconcentrated sweet whey led to enhanced multistress tolerance acquisition, overexpression of key stress proteins, and accumulation of intracellular storage molecules and compatible solutes, as well as enhanced survival upon spray drying. A simplified process from growth to spray drying of propionibacteria was developed using sweet whey as a 2-in-1 medium to both culture P. freudenreichii and protect it from heat and osmotic injury without harvesting and washing steps. As spray drying is far cheaper and more energy efficient than freeze-drying, this work opens new perspectives for the sustainable development of new starter and probiotic preparations with enhanced robustness. IMPORTANCE: In this study, we demonstrate that sweet whey, a dairy industry by-product, not only allows the growth of probiotic dairy propionibacteria, but also triggers a multitolerance response through osmoadaptation and general stress response. We also show that propionibacteria accumulate compatible solutes under these culture conditions, which might account for the limited loss of viability after spray drying. This work opens new perspectives for more energy-efficient production of dairy starters and probiotics.


Assuntos
Meios de Cultura/metabolismo , Propionibacterium freudenreichii/fisiologia , Soro do Leite/metabolismo , Meios de Cultura/química , Propionibacterium freudenreichii/crescimento & desenvolvimento , Estresse Fisiológico , Soro do Leite/química
5.
Food Microbiol ; 53(Pt A): 60-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26611170

RESUMO

Dairy propionibacteria (PAB) are used as a ripening starter in combination with Lactic acid bacteria (LAB) for dairy products such as Swiss-type cheese. LAB and PAB have also been studied for their probiotic properties but little is still known about their individual and/or synergistic beneficial effects within dairy matrices. In the context of a rising incidence of Inflammatory Bowel Diseases, it has become crucial to evaluate the immunomodulatory potential of bacteria ingested in large numbers via dairy products. We therefore selected different strains and combinations of technological LAB and PAB. We determined their immunomodulatory potential by IL-10 and IL-12 induction, in human peripheral blood mononuclear cells, on either single or mixed cultures, grown on laboratory medium or directly in milk. Milk was fermented with selected anti-inflammatory strains of LAB or PAB/LAB mixed cultures and the resulting bacterial fractions were also evaluated for these properties, together with starter viability and optimum technological aspects. The most promising fermented milks were evaluated in the context of TNBS- or DSS-induced colitis in mice. The improvement in inflammatory parameters evidenced an alleviation of colitis symptoms as a result of fermented milk consumption. This effect was clearly strain-dependent and modulated by growth within a fermented dairy product. These findings offer new tools and perspectives for the development of immunomodulatory fermented dairy products for targeted populations.


Assuntos
Produtos Fermentados do Leite/imunologia , Produtos Fermentados do Leite/microbiologia , Imunomodulação , Lactobacillaceae/fisiologia , Propionibacterium/fisiologia , Animais , Humanos , Doenças Inflamatórias Intestinais/terapia , Interleucina-10/biossíntese , Interleucina-10/imunologia , Interleucina-12/biossíntese , Interleucina-12/imunologia , Lactobacillaceae/imunologia , Leucócitos Mononucleares/imunologia , Camundongos , Probióticos/metabolismo , Propionibacterium/imunologia
6.
BMC Genomics ; 16: 296, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25886522

RESUMO

BACKGROUND: Propionibacterium freudenreichii (PF) is an actinobacterium used in cheese technology and for its probiotic properties. PF is also extremely adaptable to several ecological niches and can grow on a variety of carbon and nitrogen sources. The aim of this work was to discover the genetic basis for strain-dependent traits related to its ability to use specific carbon sources. High-throughput sequencing technologies were ideal for this purpose as they have the potential to decipher genomic diversity at a moderate cost. RESULTS: 21 strains of PF were sequenced and the genomes were assembled de novo. Scaffolds were ordered by comparison with the complete reference genome CIRM-BIA1, obtained previously using traditional Sanger sequencing. Automatic functional annotation and manual curation were performed. Each gene was attributed to either the core genome or an accessory genome. The ability of the 21 strains to degrade 50 different sugars was evaluated. Thirty-three sugars were degraded by none of the sequenced strains whereas eight sugars were degraded by all of them. The corresponding genes were present in the core genome. Lactose, melibiose and xylitol were only used by some strains. In this case, the presence/absence of genes responsible for carbon uptake and degradation correlated well with the phenotypes, with the exception of xylitol. Furthermore, the simultaneous presence of these genes was in line the metabolic pathways described previously in other species. We also considered the genetic origin (transduction, rearrangement) of the corresponding genomic islands. Ribose and gluconate were degraded to a greater or lesser extent (quantitative phenotype) by some strains. For these sugars, the phenotypes could not be explained by the presence/absence of a gene but correlated with the premature appearance of a stop codon interrupting protein synthesis and preventing the catabolism of corresponding carbon sources. CONCLUSION: These results illustrate (i) the power of correlation studies to discover the genetic basis of binary strain-dependent traits, and (ii) the plasticity of PF chromosomes, probably resulting from horizontal transfers, duplications, transpositions and an accumulation of mutations. Knowledge of the genetic basis of nitrogen and sugar degradation opens up new strategies for the screening of PF strain collections to enable optimum cheese starter, probiotic and white biotechnology applications.


Assuntos
Metabolismo dos Carboidratos/genética , Genoma Bacteriano , Ilhas Genômicas/genética , Propionibacterium/genética , Queijo/microbiologia , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Mutação , Nitratos/metabolismo , Fenótipo , Filogenia , Propionibacterium/classificação , Análise de Sequência de DNA , Especificidade da Espécie
7.
Langmuir ; 31(1): 199-208, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25479375

RESUMO

Surface protein layers (S layers) are common constituents of the bacterial cell wall and originate from the assembly of strain-dependent surface layer proteins (Slps). These proteins are thought to play important roles in the bacteria's biology and to have very promising technological applications as biomaterials or as part of cell-host cross-talk in probiotic mechanism. The SlpA from Propionibacterium freudenreichii PFCIRM 118 strain was isolated and recrystallized to investigate organization and assembly of the protein using atomic force microscopy and solid-state (1)H and (13)C-nuclear magnetic resonance. SlpA was found to form hexagonal p1 monolayer lattices where the protein exhibited high proportions of disordered regions and of bound water. The lattice structure was maintained, but softened, upon mild heating or acidification, probably in relation with the increasing mobilities of the disordered protein regions. These results gave structural insights on the mobile protein regions exposed by S layer films, upon physiologically relevant changes of their environmental conditions.


Assuntos
Biologia Computacional , Glicoproteínas de Membrana/química , Microscopia de Força Atômica , Probióticos , Propionibacterium/química , Temperatura , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Ressonância Magnética Nuclear Biomolecular
8.
Appl Environ Microbiol ; 80(2): 751-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24242250

RESUMO

Free fatty acids are important flavor compounds in cheese. Propionibacterium freudenreichii is the main agent of their release through lipolysis in Swiss cheese. Our aim was to identify the esterase(s) involved in lipolysis by P. freudenreichii. We targeted two previously identified esterases: one secreted esterase, PF#279, and one putative cell wall-anchored esterase, PF#774. To evaluate their role in lipolysis, we constructed overexpression and knockout mutants of P. freudenreichii CIRM-BIA1(T) for each corresponding gene. The sequences of both genes were also compared in 21 wild-type strains. All strains were assessed for their lipolytic activity on milk fat. The lipolytic activity observed matched data previously reported in cheese, thus validating the relevance of the method used. The mutants overexpressing PF#279 or PF#774 released four times more fatty acids than the wild-type strain, demonstrating that both enzymes are lipolytic esterases. However, inactivation of the pf279 gene induced a 75% reduction in the lipolytic activity compared to that of the wild-type strain, whereas inactivation of the pf774 gene did not modify the phenotype. Two of the 21 wild-type strains tested did not display any detectable lipolytic activity. Interestingly, these two strains exhibited the same single-nucleotide deletion at the beginning of the pf279 gene sequence, leading to a premature stop codon, whereas they harbored a pf774 gene highly similar to that of the other strains. Taken together, these results clearly demonstrate that PF#279 is the main lipolytic esterase in P. freudenreichii and a key agent of Swiss cheese lipolysis.


Assuntos
Queijo/microbiologia , Esterases/metabolismo , Lipólise , Propionibacterium/enzimologia , Esterases/genética , Microbiologia de Alimentos , Técnicas de Inativação de Genes , Variação Genética , Dados de Sequência Molecular , Propionibacterium/genética
9.
BMC Genomics ; 14: 911, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24365073

RESUMO

BACKGROUND: Propionibacterium freudenreichii is a food grade bacterium consumed both in cheeses and in probiotic preparations. Its promising probiotic potential, relying largely on the active release of beneficial metabolites within the gut as well as the expression of key surface proteins involved in immunomodulation, deserves to be explored more deeply. Adaptation to the colon environment is requisite for the active release of propionibacterial beneficial metabolites and constitutes a bottleneck for metabolic activity in vivo. Mechanisms allowing P. freudenreichii to adapt to digestive stresses have been only studied in vitro so far. Our aim was therefore to study P. freudenreichii metabolic adaptation to intra-colonic conditions in situ. RESULTS: We maintained a pure culture of the type strain P. freudenreichii CIRM BIA 1, contained in a dialysis bag, within the colon of vigilant piglets during 24 hours. A transcriptomic analysis compared gene expression to identify the metabolic pathways induced by this environment, versus control cultures maintained in spent culture medium.We observed drastic changes in the catabolism of sugars and amino-acids. Glycolysis, the Wood-Werkman cycle and the oxidative phosphorylation pathways were down-regulated but induction of specific carbohydrate catabolisms and alternative pathways were induced to produce NADH, NADPH, ATP and precursors (utilizing of propanediol, gluconate, lactate, purine and pyrimidine and amino-acids). Genes involved in stress response were down-regulated and genes specifically expressed during cell division were induced, suggesting that P. freudenreichii adapted its metabolism to the conditions encountered in the colon. CONCLUSIONS: This study constitutes the first molecular demonstration of P. freudenreichii activity and physiological adaptation in vivo within the colon. Our data are likely specific to our pig microbiota composition but opens an avenue towards understanding probiotic action within the gut in further studies comparing bacterial adaptation to different microbiota.


Assuntos
Adaptação Fisiológica , Colo/microbiologia , Probióticos , Propionibacterium/metabolismo , Transcriptoma , Animais , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas , Propionibacterium/genética , Suínos
10.
Appl Environ Microbiol ; 78(17): 6357-64, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22729537

RESUMO

Seven Propionibacterium freudenreichii strains exhibited similar responses when placed at 4°C. They slowed down cell machinery, displayed cold stress responses, and rerouted their carbon metabolism toward trehalose and glycogen synthesis, both accumulated in cells. These results highlight the molecular basis of long-term survival of P. freudenreichii in the cold.


Assuntos
Queijo/microbiologia , Glicogênio/metabolismo , Propionibacterium/fisiologia , Estresse Fisiológico , Trealose/metabolismo , Carbono/metabolismo , Temperatura Baixa , Propionibacterium/crescimento & desenvolvimento , Propionibacterium/metabolismo , Propionibacterium/efeitos da radiação
11.
Appl Environ Microbiol ; 78(6): 1765-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22247154

RESUMO

Propionibacterium freudenreichii is a bacterial species found in Swiss-type cheeses and is also considered for its health properties. The main claimed effect is the bifidogenic property. Some strains were shown recently to display other interesting probiotic potentialities such as anti-inflammatory properties. About 30% of strains were shown to produce a surface exopolysaccharide (EPS) composed of (1→3,1→2)-ß-D-glucan due to a single gene named gtfF. We hypothesized that functional properties of P. freudenreichii strains, including their anti-inflammatory properties, could be linked to the presence of ß-glucan. To evaluate this hypothesis, gtfF genes of three ß-glucan-producing strains were disrupted. These knockout (KO) mutants were complemented with a plasmid harboring gtfF (KO-C mutants). The absence of ß-glucan in KO mutants was verified by immunological detection and transmission electron microscopy. We observed by atomic force microscopy that the absence of ß-glucan in the KO mutant dramatically changed the cell's topography. The capacity to adhere to polystyrene surface was increased for the KO mutants compared to wild-type (WT) strains. Anti-inflammatory properties of WT strains and mutants were analyzed by stimulation of human peripheral blood mononuclear cells (PBMCs). A significant increase of the anti-inflammatory interleukin-10 cytokine production by PBMCs was measured in the KO mutants compared to WT strains. For one strain, the role of ß-glucan in mice gut persistence was assessed, and no significant difference was observed between the WT strain and its KO mutant. Thus, ß-glucan appears to partly hide the anti-inflammatory properties of P. freudenreichii; which is an important result for the selection of probiotic strains.


Assuntos
Glicosiltransferases/metabolismo , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Propionibacterium/imunologia , Propionibacterium/metabolismo , beta-Glucanas/imunologia , beta-Glucanas/metabolismo , Animais , Aderência Bacteriana , Trato Gastrointestinal/microbiologia , Deleção de Genes , Teste de Complementação Genética , Glicosiltransferases/genética , Humanos , Interleucina-10/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Propionibacterium/ultraestrutura
12.
Food Microbiol ; 29(1): 132-40, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22029927

RESUMO

For Emmental manufacture two kinds of adjunct culture are added: (i) thermophilic lactic acid bacteria (starters) such as Lactobacillus helveticus (LH), and Streptococcus thermophilus (ST) growing the first day of the manufacture and (ii) ripening culture. ST and LH have a key role in curd acidification and proteolysis at the beginning of the manufacture but are considered to be lyzed for a great part of them at the ripening step. The aim of this work was to assess the metabolic activity of these bacteria throughout manufacture and ripening. During Emmental cheesemaking, LH and ST were subjected to i) population quantification by numerations and by quantitative PCR (qPCR) ii) reverse transcription (RT) Temporal Temperature Gel Electrophoresis (TTGE) iii) transcript quantification by RT-qPCR targeting 16S rRNA, tuf and groL mRNAs to evaluate bacterial metabolic activity. During ripening, ST and LH numerations showed a 2.5 log(10) loss of culturability whereas qPCR on pelleted cells revealed only one log(10) of decrease for both of these species. 10(9) ST and 10(8) LH cells/g of cheese still remained. They contained a stable number of 16S transcript and at least 10(6) copies of mRNAs per 10(9) cells until the end of ripening. These results prove the unexpected persistency of thermophilic lactic acid bacteria starters (ST and LH) metabolic activity until the end of ripening and open new perspectives in term of their involvement in the quality of cheeses during ripening.


Assuntos
Queijo/microbiologia , Ácido Láctico/metabolismo , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Streptococcus thermophilus/crescimento & desenvolvimento , Streptococcus thermophilus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Alta , Lactobacillus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Streptococcus thermophilus/genética
13.
Food Microbiol ; 32(1): 135-46, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22850385

RESUMO

Dairy propionibacteria display probiotic properties which require high populations of live and metabolically active propionibacteria in the colon. In this context, the probiotic vector determines probiotic efficiency. Fermented dairy products protect propionibacteria against digestive stresses and generally contain a complex mixture of lactic and propionic acid bacteria. This does not allow the identification of dairy propionibacteria specific beneficial effects. The aim of this study was to develop a dairy product exclusively fermented by dairy propionibacteria. As they grow poorly in milk, we determined their nutritional requirements concerning carbon and nitrogen by supplementing milk ultrafiltrate (UF) with different concentrations of lactate and casein hydrolysate. Milk or UF supplemented with 50 mM lactate and 5 g L(-1) casein hydrolysate allowed growth of all dairy propionibacteria studied. In these new fermented dairy products, dairy propionibacteria remained viable and stress-tolerant in vitro during minimum 15 days at 4 °C. The efficiency of milk fermented by the most tolerant Propionibacterium freudenreichii strain was evaluated in piglets. Viability and SCFA content in the colon evidenced survival and metabolic activity of P. freudenreichii. This work results in the design of a new food grade vector, which will allow preclinical and clinical trials.


Assuntos
Leite/microbiologia , Probióticos/metabolismo , Propionibacterium/metabolismo , Animais , Bovinos , Feminino , Fermentação , Trato Gastrointestinal/microbiologia , Humanos , Ácido Láctico/metabolismo , Masculino , Viabilidade Microbiana , Propionatos/metabolismo , Propionibacterium/citologia , Suínos
14.
Int J Food Microbiol ; 345: 109130, 2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-33735781

RESUMO

Pélardon is an artisanal French raw goat's milk cheese, produced using natural whey as a backslop. The aim of this study was to identify key microbial players involved in the acidification and aroma production of this Protected Designation of Origin cheese. Microbial diversity of samples, collected from the raw milk to 3-month cheese ripening, was determined by culture-dependent (MALDI-TOF analysis of 2877 isolates) and -independent (ITS2 and 16S metabarcoding) approaches and linked to changes in biochemical profiles (volatile compounds and acids). In parallel, potential dominant autochthonous microorganism reservoirs were also investigated by sampling the cheese-factory environment. Complex and increasing microbial diversity was observed by both approaches during ripening although major discrepancies were observed regarding Lactococcus lactis and Lacticaseibacillus paracasei fate. By correlating microbial shifts to biochemical changes, Lactococcus lactis was identified as the main acidifying bacterium, while L. mesenteroides and Geotrichum candidum were prevalent and associated with amino acids catabolism after the acidification step. The three species were dominant in the whey (backslop). In contrast, L. paracasei, Enterococcus faecalis, Penicillium commune and Scopulariopsis brevicaulis, which dominated during ripening, likely originated from the cheese-making environment. All these four species were positively correlated to major volatile compounds responsible for the goaty and earthy Pélardon cheese aroma. Overall, this work highlighted the power of MALDI-TOF and molecular techniques combined with volatilome analyses to dynamically follow and identify microbial communities during cheese-making and successively identify the key-players involved in aroma production and contributing to the typicity of Pélardon cheese.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Queijo/microbiologia , Fungos/classificação , Fungos/metabolismo , Leite/microbiologia , Animais , Bactérias/isolamento & purificação , Enterococcus faecalis/isolamento & purificação , Enterococcus faecalis/metabolismo , Fungos/isolamento & purificação , Geotrichum/isolamento & purificação , Geotrichum/metabolismo , Cabras , Lacticaseibacillus paracasei/isolamento & purificação , Lacticaseibacillus paracasei/metabolismo , Lactococcus lactis/isolamento & purificação , Lactococcus lactis/metabolismo , Microbiota , Odorantes/análise , Penicillium/isolamento & purificação , Penicillium/metabolismo , Scopulariopsis/isolamento & purificação , Scopulariopsis/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
J Agric Food Chem ; 69(30): 8511-8529, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34283609

RESUMO

The formation of cheese flavor mainly results from the production of volatile compounds by microorganisms. We investigated how fine-tuning cheese-making process parameters changed the cheese volatilome in a semi-hard cheese inoculated with Lactococcus (L.) lactis, Lactiplantibacillus (L.) plantarum, and Propionibacterium (P.) freudenreichii. A standard (Std) cheese was compared with three variants of technological itineraries: a shorter salting time (7 h vs 10 h, Salt7h), a shorter stirring time (15 min vs 30 min, Stir15min), or a higher ripening temperature (16 °C vs 13 °C, Rip16°C). Bacterial counts were similar in the four cheese types, except for a 1.4 log10 reduction of L. lactis counts in Rip16°C cheeses after 7 weeks of ripening. Compared to Std, Stir15min and Rip16°C increased propionibacterial activity, causing higher concentrations of acetic, succinic, and propanoic acids and lower levels of lactic acid. Rip16°C accelerated secondary proteolysis and volatile production. We thus demonstrated that fine-tuning process parameters could modulate the cheese volatilome by influencing specific bacterial metabolisms.


Assuntos
Queijo , Lactococcus lactis , Queijo/análise , Microbiologia de Alimentos , Odorantes/análise
16.
Front Microbiol ; 11: 584163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329449

RESUMO

Designing bacterial co-cultures adapted to ferment mixes of vegetal and animal resources for food diversification and sustainability is becoming a challenge. Among bacteria used in food fermentation, lactic acid bacteria (LAB) are good candidates, as they are used as starter or adjunct in numerous fermented foods, where they allow preservation, enhanced digestibility, and improved flavor. We developed here a strategy to design LAB co-cultures able to ferment a new food made of bovine milk and lupin flour, consisting in: (i) in silico preselection of LAB species for targeted carbohydrate degradation; (ii) in vitro screening of 97 strains of the selected species for their ability to ferment carbohydrates and hydrolyze proteins from milk and lupin and clustering strains that displayed similar phenotypes; and (iii) assembling strains randomly sampled from clusters that showed complementary phenotypes. The designed co-cultures successfully expressed the targeted traits i.e., hydrolyzed proteins and degraded raffinose family oligosaccharides of lupin and lactose of milk in a large range of concentrations. They also reduced an off-flavor-generating volatile, hexanal, and produced various desirable flavor compounds. Most of the strains in co-cultures achieved higher cell counts than in monoculture, suggesting positive interactions. This work opens new avenues for the development of innovative fermented food products based on functionally complementary strains in the world-wide context of diet diversification.

17.
J Microbiol Methods ; 69(3): 431-41, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17397952

RESUMO

Molecular fingerprinting of bacterial ecosystems has recently increased in food microbiology. The aim of this work was to develop a rapid and easy method to extract DNA from various cheeses, and to optimize the separation of low and high GC-content bacteria by PCR-Temporal Temperature Gel Electrophoresis (PCR-TTGE). Seventy six strains belonging to 50 of the most frequently encountered bacterial species in dairy products were used to construct a database. Specific PCR-TTGE ladders containing 17 species forming a regular scale were created. Amplicons of these species were sequenced and the GC-content plotted against the migration distance: the correlation coefficients obtained were r(2)=0.97 and r(2)=0.99, respectively for high and low GC-contents. The extraction method developed did not use any harmful solvent such as phenol/chloroform. The concentrations of DNA extracted from hard cooked and pressed cheeses, quantified by picogreen molecular probes, were between 0.7 and 6 microg/g for core samples and 8 to 30 microg/g for rind samples. Experimental as well as commercial dairy products were analysed using the developed method and the reproducibility of the profiles was 89%. The method appears to be particularly efficient in the characterization of the ecosystem of cheese rinds.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Composição de Bases , DNA Bacteriano/isolamento & purificação , Laticínios/microbiologia , Eletroforese em Gel de Ágar/métodos , Reação em Cadeia da Polimerase/métodos , Bactérias/química , Bactérias/genética , Biotecnologia/métodos , Queijo/microbiologia , Contagem de Colônia Microbiana , DNA Bacteriano/análise , Reprodutibilidade dos Testes , Temperatura , Fatores de Tempo , Iogurte/microbiologia
18.
Sci Rep ; 7: 46409, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406170

RESUMO

Propionibacterium freudenreichii, a dairy starter, can reach a population of almost 109 propionibacteria per gram in Swiss-type cheese at the time of consumption. Also consumed as a probiotic, it displays strain-dependent anti-inflammatory properties mediated by surface proteins that induce IL-10 in leukocytes. We selected 23 strains with varied anti-inflammatory potentials in order to identify the protein(s) involved. After comparative genomic analysis, 12 of these strains were further analysed by surface proteomics, eight of them being further submitted to transcriptomics. The omics data were then correlated to the anti-inflammatory potential evaluated by IL-10 induction. This comparative omics strategy highlighted candidate genes that were further subjected to gene-inactivation validation. This validation confirmed the contribution of surface proteins, including SlpB and SlpE, two proteins with SLH domains known to mediate non-covalent anchorage to the cell-wall. Interestingly, HsdM3, predicted as cytoplasmic and involved in DNA modification, was shown to contribute to anti-inflammatory activity. Finally, we demonstrated that a single protein cannot explain the anti-inflammatory properties of a strain. These properties therefore result from different combinations of surface and cytoplasmic proteins, depending on the strain. Our enhanced understanding of the molecular bases for immunomodulation will enable the relevant screening for bacterial resources with anti-inflammatory properties.


Assuntos
Anti-Inflamatórios/metabolismo , Queijo/microbiologia , Perfilação da Expressão Gênica/métodos , Propionibacterium freudenreichii/isolamento & purificação , Proteômica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Regulação Bacteriana da Expressão Gênica , Genômica , Humanos , Interleucina-10/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Filogenia , Propionibacterium freudenreichii/classificação , Propionibacterium freudenreichii/genética , Propionibacterium freudenreichii/imunologia
19.
Int J Food Microbiol ; 107(2): 171-9, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16269194

RESUMO

Cheese microorganisms, such as bacteria and fungi, constitute a complex ecosystem that plays a central role in cheeses ripening. The molecular study of cheese microbial diversity and activity is essential but the extraction of high quality nucleic acid may be problematic: the cheese samples are characterised by a strong buffering capacity which negatively influenced the yield of the extracted rRNA. The objective of this study is to develop an effective method for the direct and simultaneous isolation of yeast and bacterial ribosomal RNA and genomic DNA from the same cheese samples. DNA isolation was based on a protocol used for nucleic acids isolation from anaerobic digestor, without preliminary washing step with the combined use of the action of chaotropic agent (acid guanidinium thiocyanate), detergents (SDS, N-lauroylsarcosine), chelating agent (EDTA) and a mechanical method (bead beating system). The DNA purification was carried out by two washing steps of phenol-chloroform. RNA was isolated successfully after the second acid extraction step by recovering it from the phenolic phase of the first acid extraction. The novel method yielded pure preparation of undegraded RNA accessible for reverse transcription-PCR. The extraction protocol of genomic DNA and rRNA was applicable to complex ecosystem of different cheese matrices.


Assuntos
Bactérias/genética , Queijo/microbiologia , Microbiologia de Alimentos , Fungos/genética , RNA Ribossômico/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Bactérias/classificação , DNA Bacteriano/isolamento & purificação , DNA Fúngico/isolamento & purificação , Fungos/classificação , RNA Bacteriano/isolamento & purificação , RNA Fúngico/isolamento & purificação , Especificidade da Espécie
20.
Stand Genomic Sci ; 11: 6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26779303

RESUMO

Propionibacterium freudenreichii belongs to the class Actinobacteria (Gram positive with a high GC content). This "Generally Recognized As Safe" (GRAS) species is traditionally used as (i) a starter for Swiss-type cheeses where it is responsible for holes and aroma production, (ii) a vitamin B12 and propionic acid producer in white biotechnologies, and (iii) a probiotic for use in humans and animals because of its bifidogenic and anti-inflammatory properties. Until now, only strain CIRM-BIA1T had been sequenced, annotated and become publicly available. Strain CIRM-BIA129 (commercially available as ITG P20) has considerable anti-inflammatory potential. Its gene content was compared to that of CIRM-BIA1 T. This strain contains 2384 genes including 1 ribosomal operon, 45 tRNA and 30 pseudogenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA