Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(26): e2214842120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339216

RESUMO

Transplantation of stem cell-derived retinal pigment epithelial (RPE) cells is considered a viable therapeutic option for age-related macular degeneration (AMD). Several landmark Phase I/II clinical trials have demonstrated safety and tolerability of RPE transplants in AMD patients, albeit with limited efficacy. Currently, there is limited understanding of how the recipient retina regulates the survival, maturation, and fate specification of transplanted RPE cells. To address this, we transplanted stem cell-derived RPE into the subretinal space of immunocompetent rabbits for 1 mo and conducted single-cell RNA sequencing analyses on the explanted RPE monolayers, compared to their age-matched in vitro counterparts. We observed an unequivocal retention of RPE identity, and a trajectory-inferred survival of all in vitro RPE populations after transplantation. Furthermore, there was a unidirectional maturation toward the native adult human RPE state in all transplanted RPE, regardless of stem cell resource. Gene regulatory network analysis suggests that tripartite transcription factors (FOS, JUND, and MAFF) may be specifically activated in posttransplanted RPE cells, to regulate canonical RPE signature gene expression crucial for supporting host photoreceptor function, and to regulate prosurvival genes required for transplanted RPE's adaptation to the host subretinal microenvironment. These findings shed insights into the transcriptional landscape of RPE cells after subretinal transplantation, with important implications for cell-based therapy for AMD.


Assuntos
Degeneração Macular , Transcriptoma , Adulto , Animais , Humanos , Coelhos , Degeneração Macular/genética , Degeneração Macular/terapia , Células-Tronco , Células Epiteliais , Pigmentos da Retina
2.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240109

RESUMO

Retinal pigment epithelial (RPE) cell dysfunction is a key driving force of AMD. RPE cells form a metabolic interface between photoreceptors and choriocapillaris, performing essential functions for retinal homeostasis. Through their multiple functions, RPE cells are constantly exposed to oxidative stress, which leads to the accumulation of damaged proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. As miniature chemical engines of the cell, self-replicating mitochondria are heavily implicated in the aging process through a variety of mechanisms. In the eye, mitochondrial dysfunction is strongly associated with several diseases, including age-related macular degeneration (AMD), which is a leading cause of irreversible vision loss in millions of people globally. Aged mitochondria exhibit decreased rates of oxidative phosphorylation, increased reactive oxygen species (ROS) generation, and increased numbers of mitochondrial DNA mutations. Mitochondrial bioenergetics and autophagy decline during aging because of insufficient free radical scavenger systems, the impairment of DNA repair mechanisms, and reductions in mitochondrial turnover. Recent research has uncovered a much more complex role of mitochondrial function and cytosolic protein translation and proteostasis in AMD pathogenesis. The coupling of autophagy and mitochondrial apoptosis modulates the proteostasis and aging processes. This review aims to summarise and provide a perspective on (i) the current evidence of autophagy, proteostasis, and mitochondrial dysfunction in dry AMD; (ii) current in vitro and in vivo disease models relevant to assessing mitochondrial dysfunction in AMD, and their utility in drug screening; and (iii) ongoing clinical trials targeting mitochondrial dysfunction for AMD therapeutics.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Humanos , Idoso , Epitélio Pigmentado da Retina/metabolismo , Proteostase , Autofagia/genética , Estresse Oxidativo/genética , Degeneração Macular/patologia , Mitocôndrias/metabolismo
3.
Carbohydr Polym ; 302: 120308, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604036

RESUMO

Hydrogels with more than one mode of crosslinking have gained interest due to improved control over hydrogel properties such as mechanical strength using multiple stimuli. In this work, sodium alginate was covalently conjugated onto thermoresponsive polyurethanes to prepare hybrid polymers (EPC-Alg) that are responsive to both temperature and Ca2+, forming orthogonally crosslinked hydrogels which are non-toxic to cells. Notably, the crosslinks are fully reversible, allowing for gel strength to be modulated via selective removal of either stimulus, or complete deconstruction of the hydrogel network by removing both stimuli. Higher alginate fractions increased the hydrophilicity and Ca2+ response of the EPC-Alg hydrogel, enabling tunable modulation of the thermal stability, stiffness and gelation temperatures. The EPC-Alg hydrogel could sustain protein release for a month and encapsulate neural spheroids with high cell viability after 7-day culture, demonstrating feasibility towards 3D cell encapsulation in cell-based biomedical applications such as cell encapsulation and cell therapy.


Assuntos
Alginatos , Encapsulamento de Células , Hidrogéis/farmacologia
4.
ACS Nano ; 17(12): 11593-11606, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37306553

RESUMO

Present day strategies for delivery of wireless photodynamic therapy (PDT) to deep-seated targets are limited by the inadequacy of irradiance and insufficient therapeutic depth. Here we report the design and preclinical validation of a flexible wireless upconversion nanoparticle (UCNP) implant (SIRIUS) that is capable of large field, high intensity illumination for PDT of deep-seated tumors. The implant achieves this by incorporating submicrometer core-shell-shell NaYF4 UCNPs into its design, which significantly enhances upconversion efficiency and mitigates light loss from surface quenching. We demonstrate the efficacy of SIRIUS UCNP implant mediated PDT in preclinical breast cancer disease models. In our in vitro experiments, SIRIUS directed 5-Aminolevulinic Acid (5-ALA) based wireless PDT leads to significant reactive oxygen species (ROS) generation and tumor apoptosis in hormonal receptor+/HER2+ (MCF7) and triple-negative (MDA-MB-231) breast cancer cell lines. In our in vivo rodent model, SIRIUS-driven PDT is shown to be significant in regressing tumors when applied to orthotopically inoculated breast tumors. Following successful preclinical validation, we also describe a clinical prototype of UCNP breast implant with potential dual cosmetic and onco-therapeutic functions. SIRIUS is an upconversion breast implant for wireless PDT that fulfils all the design prerequisites necessary for seamless clinical translation.


Assuntos
Implantes de Mama , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Ácido Aminolevulínico , Linhagem Celular Tumoral
5.
Int J Bioprint ; 8(3): 550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105130

RESUMO

Age-related macular degeneration (AMD) is the leading cause of visual loss and affects millions of people worldwide. Dysfunction of the retinal pigment epithelium (RPE) is associated with the pathogenesis of AMD. The purpose of this work is to build and evaluate the performance of ultrathin scaffolds with an electrohydrodynamic jet (EHDJ) printing method for RPE cell culture. We printed two types of ultrathin (around 7 µm) polycaprolactone scaffolds with 20 µm and 50 µm pores, which possess mechanical properties resembling that of native human Bruch's membrane and are biodegradable. Light microscopy and cell proliferation assay showed that adult human retinal pigment epithelial (ARPE-19) cells adhered and proliferated to form a monolayer on the scaffolds. The progress of culture matured on the scaffolds was demonstrated by immunofluorescence (actin, ZO-1, and Na+/K+-ATPase) and Western blot analysis of the respective proteins. The RPE cells cultured on EHDJ-printed scaffolds with 20 µm pores presented higher permeability, higher transepithelial potential difference, and higher expression level of Na+/K+-ATPase than those cultured on Transwell inserts. These findings suggest that the EHDJ printing can fabricate scaffolds that mimic Bruch's membrane by promoting maturation of RPE cells to form a polarized and functional monolayered epithelium with potential as an in vitro model for studying retinal diseases and treatment methods.

6.
Sci Rep ; 12(1): 15563, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114268

RESUMO

Retinal pigment epithelial (RPE) cell dysfunction and death are characteristics of age-related macular degeneration. A promising therapeutic option is RPE cell transplantation. Development of clinical grade stem-cell derived RPE requires efficient in vitro differentiation and purification methods. Enzymatic purification of RPE relies on the relative adherence of RPE and non-RPE cells to the culture plate. However, morphology and adherence of non-RPE cells differ for different stem cell sources. In cases whereby the non-RPE adhered as strongly as RPE cells to the culture plate, enzymatic method of purification is unsuitable. Thus, we hypothesized the need to customize purification strategies for RPE derived from different stem cell sources. We systematically compared five different RPE purification methods, including manual, enzymatic, flow cytometry-based sorting or combinations thereof for parameters including cell throughput, yield, purity and functionality. Flow cytometry-based approach was suitable for RPE isolation from heterogeneous cultures with highly adherent non-RPE cells, albeit with lower yield. Although all five purification methods generated pure and functional RPE, there were significant differences in yield and processing times. Based on the high purity of the resulting RPE and relatively short processing time, we conclude that a combination of enzymatic and manual purification is ideal for clinical applications.


Assuntos
Epitélio Pigmentado da Retina , Células-Tronco , Diferenciação Celular , Células Epiteliais/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo
7.
Adv Mater ; 34(25): e2108360, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34726299

RESUMO

The traditional intravitreal injection delivery of antivascular endothelial growth factor (anti-VEGF) to the posterior segment of the eye for treatment of retinal diseases is invasive and associated with sight-threatening complications. To avoid such complications, there has been significant interest in developing polymers for topical drug delivery to the retina. This study reports a nanomicelle drug delivery system made of a copolymer EPC (nEPCs), which is capable of delivering aflibercept to the posterior segment topically through corneal-scleral routes. EPC is composed of poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and polycaprolactone (PCL) segments. In this study, aflibercept-loaded nEPCs (nEPCs + A) are capable of penetrating the cornea in ex vivo porcine eye models and deliver a clinically significant amount of aflibercept to the retina in laser-induced choroidal neovascularization (CNV) murine models, causing CNV regression. nEPCs + A also demonstrate biocompatibility in vitro and in vivo. Interestingly, this study also suggests that nEPCs have intrinsic antiangiogenic properties. The ability to deliver anti-VEGF drugs and the intrinsic antiangiogenic properties of nEPCs may result in synergistic effects, which can be harnessed for effective therapeutics. nEPCs may be a promising topical anti-VEGF delivery platform for the treatment of retinal diseases.


Assuntos
Neovascularização de Coroide , Doenças Retinianas , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/etiologia , Sistemas de Liberação de Medicamentos , Camundongos , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão , Doenças Retinianas/complicações , Doenças Retinianas/tratamento farmacológico , Suínos , Fator A de Crescimento do Endotélio Vascular
8.
Nat Commun ; 13(1): 2796, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589753

RESUMO

One common cause of vision loss after retinal detachment surgery is the formation of proliferative and contractile fibrocellular membranes. This aberrant wound healing process is mediated by epithelial-mesenchymal transition (EMT) and hyper-proliferation of retinal pigment epithelial (RPE) cells. Current treatment relies primarily on surgical removal of these membranes. Here, we demonstrate that a bio-functional polymer by itself is able to prevent retinal scarring in an experimental rabbit model of proliferative vitreoretinopathy. This is mediated primarily via clathrin-dependent internalisation of polymeric micelles, downstream suppression of canonical EMT transcription factors, reduction of RPE cell hyper-proliferation and migration. Nuclear factor erythroid 2-related factor 2 signalling pathway was identified in a genome-wide transcriptomic profiling as a key sensor and effector. This study highlights the potential of using synthetic bio-functional polymer to modulate RPE cellular behaviour and offers a potential therapy for retinal scarring prevention.


Assuntos
Fator 2 Relacionado a NF-E2 , Epitélio Pigmentado da Retina , Animais , Linhagem Celular , Movimento Celular , Cicatriz/metabolismo , Transição Epitelial-Mesenquimal , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Polímeros/metabolismo , Coelhos , Epitélio Pigmentado da Retina/metabolismo
9.
Macromol Biosci ; 21(10): e2100191, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34263547

RESUMO

Human organoids mimic the physiology and tissue architecture of organs and are of great significance for promoting the study of human diseases. Traditionally, organoid cultures rely predominantly on animal or tumor-derived extracellular matrix (ECM), resulting in poor reproducibility. This limits their utility in for large-scale drug screening and application for regenerative medicine. Recently, synthetic polymeric hydrogels, with high biocompatibility and biodegradability, stability, uniformity of compositions, and high throughput properties, have emerged as potential materials for achieving 3D architectures for organoid cultures. Compared to conventional animal or tumor-derived organoids, these newly engineered hydrogel-based organoids more closely resemble human organs, as they are able to mimic native structural and functional properties observed in-situ. In this review, recent developments in hydrogel-based organoid culture will be summarized, emergent hydrogel technology will be highlighted, and future challenges in applying them to organoid culture will be discussed.


Assuntos
Hidrogéis , Organoides , Animais , Matriz Extracelular/química , Hidrogéis/química , Medicina Regenerativa , Reprodutibilidade dos Testes
10.
Stem Cell Reports ; 16(2): 237-251, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33450191

RESUMO

Recent trials of retinal pigment epithelium (RPE) transplantation for the treatment of disorders such as age-related macular degeneration have been promising. However, limitations of existing strategies include the uncertain survival of RPE cells delivered by cell suspension and the inherent risk of uncontrolled cell proliferation in the vitreous cavity. Human RPE stem cell-derived RPE (hRPESC-RPE) transplantation can rescue vision in a rat model of retinal dystrophy and survive in the rabbit retina for at least 1 month. The present study placed hRPESC-RPE monolayers under the macula of a non-human primate model for 3 months. The transplant was able to recover in vivo and maintained healthy photoreceptors. Importantly, there was no evidence that subretinally transplanted monolayers underwent an epithelial-mesenchymal transition. Neither gliosis in adjacent retina nor epiretinal membranes were observed. These findings suggest that hRPESC-RPE monolayers are safe and may be a useful source for RPE cell replacement therapy.


Assuntos
Xenoenxertos/transplante , Degeneração Macular/terapia , Epitélio Pigmentado da Retina/transplante , Transplante de Células-Tronco/métodos , Idoso , Idoso de 80 Anos ou mais , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Feminino , Xenoenxertos/patologia , Humanos , Terapia de Imunossupressão , Macaca fascicularis , Masculino , Células Fotorreceptoras/fisiologia , Primatas , Retina/patologia , Retina/transplante , Epitélio Pigmentado da Retina/patologia
11.
Nat Commun ; 12(1): 5675, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584087

RESUMO

The retina is a widely profiled tissue in multiple species by single-cell RNA sequencing studies. However, integrative research of the retina across species is lacking. Here, we construct the first single-cell atlas of the human and porcine ocular compartments and study inter-species differences in the retina. In addition to that, we identify putative adult stem cells present in the iris tissue. We also create a disease map of genes involved in eye disorders across compartments of the eye. Furthermore, we probe the regulons of different cell populations, which include transcription factors and receptor-ligand interactions and reveal unique directional signalling between ocular cell types. In addition, we study conservation of regulons across vertebrates and zebrafish to identify common core factors. Here, we show perturbation of KLF7 gene expression during retinal ganglion cells differentiation and conclude that it plays a significant role in the maturation of retinal ganglion cells.


Assuntos
Diferenciação Celular/genética , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Análise de Célula Única/métodos , Transcriptoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Perfilação da Expressão Gênica/métodos , Humanos , Pessoa de Meia-Idade , Retina/citologia , Análise de Sequência de RNA/métodos , Especificidade da Espécie , Suínos
12.
Stem Cell Res Ther ; 12(1): 464, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412697

RESUMO

BACKGROUND: Retinal regenerative therapies hold great promise for the treatment of inherited retinal degenerations (IRDs). Studies in preclinical lower mammal models of IRDs have suggested visual improvement following retinal photoreceptor precursors transplantation, but there is limited evidence on the ability of these transplants to rescue retinal damage in higher mammals. The purpose of this study was to evaluate the therapeutic potential of photoreceptor precursors derived from clinically compliant induced pluripotent stem cells (iPSCs). METHODS: Photoreceptor precursors were sub-retinally transplanted into non-human primates (Macaca fascicularis). The cells were transplanted both in naïve and cobalt chloride-induced retinal degeneration models who had been receiving systemic immunosuppression for one week prior to the procedure. Optical coherence tomography, fundus autofluorescence imaging, electroretinography, ex vivo histology and immunofluorescence staining were used to evaluate retinal structure, function and survival of transplanted cells. RESULTS: There were no adverse effects of iPSC-derived photoreceptor precursors on retinal structure or function in naïve NHP models, indicating good biocompatibility. In addition, photoreceptor precursors injected into cobalt chloride-induced retinal degeneration NHP models demonstrated an ability both to survive and to mature into cone photoreceptors at 3 months post-transplant. Optical coherence tomography showed restoration of retinal ellipsoid zone post-transplantation. CONCLUSIONS: These findings demonstrate the safety and therapeutic potential of clinically compliant iPSC-derived photoreceptor precursors as a cell replacement source for future clinical trials.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Animais , Humanos , Células Fotorreceptoras de Vertebrados , Primatas , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana/terapia
13.
ACS Appl Bio Mater ; 3(12): 9043-9053, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019581

RESUMO

Polymeric hydrogels are promising biomaterials to be used as vitreous tamponade in the eye. However, while the clinical need and the required attributes of a vitreous replacement hydrogel are clear, there is a major gap in understanding the various polymer requirements to achieve the "ideal" hydrogel. In this study, we investigated the effect of the polymer molecular weight on polyurethane thermogel properties and found that there is a theoretical minimum number of hydrophobic blocks required for gelation. We then used these polymers as vitreous replacements. We found that there is a preferred molecular weight range, whereby hydrogels with lower molecular weights can cause retinal atrophy and corresponding functional visual loss, while those with higher molecular weights lead to opacity issues. Thermogels in the preferred molecular weight range retained the normal retinal structure and exhibited full visual recovery within 3 months. The effect of the molecular weight was further demonstrated by the effects of postsynthetic autoclaving on the retinal structure and function. The effect of the polymer molecular weight on the functional characteristics of hydrogels demonstrated herein is an important design parameter for polymeric hydrogels for ocular applications.

14.
Biomater Sci ; 7(11): 4603-4614, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31436780

RESUMO

Anti-vascular endothelial growth factor (anti-VEGF) proteins are the gold-standard treatment for posterior eye segment proliferative vascular diseases such as Age-Related Macular Degeneration (AMD) and Diabetic Retinopathy (DR). However, the standard of care requires inconvenient monthly intravitreal injections. This underlies an unmet clinical need to develop alternative solutions for sustained delivery of biologics. In this paper, we demonstrated that anti-VEGFs can be encapsulated by a simple mild process into our polyurethane thermogel depots. By changing the hydrophilic-hydrophobic balance in the copolymer, anti-VEGF release rates can be modulated. The antibody in the thermogel partitions into protein domains which vary in size corresponding to the hydrophilicity balance of the polymer. Anti-VEGFs can be released in a relatively linear manner from the thermogel for up to 40 days in vitro. The encapsulated anti-VEGFs demonstrate anti-angiogenic bioactivity by inhibiting vessel outgrowth in rat ex vivo choroidal explants, and reducing vascular leakage in a VEGF-driven neovascularization rabbit model. In conclusion, we show that these thermogels can be tuned in terms of hydrophilicity and used for sustained delivery of bioactive anti-VEGFs. Physically cross-linked polyurethane thermoresponsive hydrogels could be a promising platform for sustained delivery of biologically active therapeutic proteins.


Assuntos
Inibidores da Angiogênese/farmacologia , Sistemas de Liberação de Medicamentos , Neovascularização Patológica/tratamento farmacológico , Poliuretanos/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ácido 2-Aminoadípico , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Animais , Humanos , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/induzido quimicamente , Poliuretanos/administração & dosagem , Poliuretanos/química , Coelhos , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Nat Biomed Eng ; 3(8): 598-610, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962587

RESUMO

Internal-tamponade agents are crucial surgical adjuncts in vitreoretinal surgery. Clinically used endotamponade agents act through buoyancy forces, yet can result in prolonged post-operative positioning, temporary loss of vision, raised intra-ocular pressure, cataract formation or the need for additional removal surgery. Here, we describe a thermogelling polymer that provides an internal tamponade effect through surface tension and swelling counter-forces. We tested the long-term biocompatibility of the polymer endotamponade in rabbit vitrectomy models, and its surgical efficacy and biocompatibility in a non-human primate retinal-detachment model. We also show that, while the thermogel biodegrades during the three months following surgery, it promotes the reformation of a vitreous-like body that mimics the biophysical properties of the natural vitreous. The thermogelling endotamponade might serve as a long-term vitreous substitute.


Assuntos
Tamponamento Interno/métodos , Polímeros , Descolamento Retiniano/cirurgia , Corpo Vítreo/cirurgia , Animais , Géis/química , Humanos , Pressão Intraocular , Macaca fascicularis , Masculino , Modelos Animais , Manejo da Dor , Coelhos , Retina , Tensão Superficial , Tonometria Ocular , Vitrectomia/métodos , Cirurgia Vitreorretiniana/métodos
16.
ACS Omega ; 2(12): 8959-8968, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023596

RESUMO

Natural polysaccharide pectin has for the first time been grafted with polyhydroxybutyrate (PHB) via ring-opening polymerization of ß-butyrolactone. This copolymer, pectin-polyhydroxybutyrate (pec-PHB), was blended with PHB in various proportions and electrospun to produce nanofibers that exhibited uniform and bead-free nanostructures, suggesting the miscibility of PHB and pec-PHB. These nanofiber blends exhibited reduced fiber diameters from 499 to 336-426 nm and water contact angles from 123.8 to 88.2° on incorporation of pec-PHB. They also displayed 39-335% enhancement of elongation at break relative to pristine PHB nanofibers. pec-PHB nanofibers were found to be noncytotoxic and biocompatible. Human retinal pigmented epithelium (ARPE-19) cells were seeded onto pristine PHB and pec-PHB nanofibers as scaffold and showed good proliferation. Higher proportions of pec-PHB (pec-PHB10 and pec-PHB20) yielded higher densities of cells with similar characteristics to normal RPE cells. We propose, therefore, that nanofibers of pec-PHB have significant potential as retinal tissue engineering scaffold materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA