Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(3): e0211523, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38323847

RESUMO

Iron is essential to many biological processes but its poor solubility in aerobic environments restricts its bioavailability. To overcome this limitation, bacteria have evolved a variety of strategies, including the production and secretion of iron-chelating siderophores. Here, we describe the discovery of four series of siderophores from Streptomyces ambofaciens ATCC23877, three of which are unprecedented. MS/MS-based molecular networking revealed that one of these series corresponds to acylated desferrioxamines (acyl-DFOs) recently identified from S. coelicolor. The remaining sets include tetra- and penta-hydroxamate acyl-DFO derivatives, all of which incorporate a previously undescribed building block. Stable isotope labeling and gene deletion experiments provide evidence that biosynthesis of the acyl-DFO congeners requires unprecedented crosstalk between two separate non-ribosomal peptide synthetase (NRPS)-independent siderophore (NIS) pathways in the producing organism. Although the biological role(s) of these new derivatives remain to be elucidated, they may confer advantages in terms of metal chelation in the competitive soil environment due to the additional bidentate hydroxamic functional groups. The metabolites may also find application in various fields including biotechnology, bioremediation, and immuno-PET imaging.IMPORTANCEIron-chelating siderophores play important roles for their bacterial producers in the environment, but they have also found application in human medicine both in iron chelation therapy to prevent iron overload and in diagnostic imaging, as well as in biotechnology, including as agents for biocontrol of pathogens and bioremediation. In this study, we report the discovery of three novel series of related siderophores, whose biosynthesis depends on the interplay between two NRPS-independent (NIS) pathways in the producing organism S. ambofaciens-the first example to our knowledge of such functional cross-talk. We further reveal that two of these series correspond to acyl-desferrioxamines which incorporate four or five hydroxamate units. Although the biological importance of these novel derivatives is unknown, the increased chelating capacity of these metabolites may find utility in diagnostic imaging (for instance, 89Zr-based immuno-PET imaging) and other applications of metal chelators.


Assuntos
Desferroxamina , Peptídeo Sintases , Sideróforos , Humanos , Sideróforos/metabolismo , Desferroxamina/metabolismo , Espectrometria de Massas em Tandem , Ferro/metabolismo , Ácidos Hidroxâmicos
2.
Bioorg Chem ; 143: 107100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211550

RESUMO

The use of acetylation followed by silica gel column purification allowed the isolation of eight fructooligosaccharides (FOS) from the ethanol extract of Cynoglossum tubiflorus roots. Each FOS was identified by analyzing its FT-IR, HRMS/MS and NMR data, including 1H, 13C and 2D NMR HH COSY, HMBC and NOESY. In diabetic rats treated with a series of FOS from Glc-(Fru)3 to Glc-(Fru)7, a significant inhibition of intestinal α-amylase was observed. This activity increases proportionally with the FOS molecular size. It was found that they delay the absorption of total cholesterol (TC), ldl-cholesterol (LDL-C) and increase HDL-cholesterol (HDL-C) in a molecular size-dependent manner. This inhibitory effect on the activity of the digestive enzyme causes a significant (p < 0.05) reduction in the level of glucose in the blood as an anti-diabetic action. The ethanolic extract (E.E) exerts a significant effect against α-amylase as well as antihyperglycemic and antihyperlipidemic actions, while its acetylation suppresses these effects. Therefore, this study demonstrates for the first time that pure FOS act as an efficient agent in preventing hyperglycemia and hyperlipidemia and that this action evolves in the same manner with their molecular size.


Assuntos
Diabetes Mellitus Experimental , Hipoglicemiantes , Oligossacarídeos , Ratos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Aloxano/farmacologia , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/química , Glicemia , Colesterol , alfa-Amilases
3.
Appl Environ Microbiol ; 89(10): e0045323, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800940

RESUMO

To mobilize nutrients entrapped into minerals and rocks, heterotrophic bacteria living in nutrient-poor environments have developed different mechanisms based mainly on acidolysis and chelation. However, the genetic bases of these mechanisms remain unidentified. To fill this gap, we considered the model strain Caballeronia mineralivorans PML1(12) known to be effective at weathering. Based on its transcriptomics and proteomics responses in Fe-depleted conditions, we pointed a cluster of genes differentially expressed and putatively involved in the production of siderophores. In this study, we report the characterization of this gene region coding for the production of a non-ribosomal peptide synthetase-independent siderophore (NIS). Targeted mutagenesis associated with functional assays and liquid chromatography coupled to high-resolution tandem mass spectrometry demonstrated the production of a single siderophore, identified as rhizobactin. This siderophore represents the first NIS containing malic acid in its structure. The evidence for the implication of rhizobactin in mineral weathering was demonstrated during a hematite dissolution assay. This study provides the first demonstration of the synthesis of a NIS in the genus Caballeronia and its involvement in mineral weathering. Our conclusions reinforce the idea that strain PML1(12) is particularly well adapted to nutrient-poor environments. IMPORTANCE This work deciphers the molecular and genetic bases used by strain PML1(12) of Caballeronia mineralivorans to mobilize iron and weather minerals. Through the combination of bioinformatics, chemical, and phylogenetic analyses, we characterized the siderophore produced by strain PML1(12) and the related genes. This siderophore was identified as rhizobactin and classified as a non-ribosomal peptide synthetase-independent siderophore (NIS). Contrary to the previously identified NIS synthetases that form siderophores containing citric acid, α-ketoglutarate, or succinic acid, our analyses revealed that rhizobactin contains malic acid in its structure, representing, therefore, the first identified NIS with such an acid and probably a new NIS category. Last, this work demonstrates for the first time the effectiveness at weathering minerals of a siderophore of the NIS family. Our findings offer relevant information for different fields of research, such as environmental genomics, microbiology, chemistry, and soil sciences.


Assuntos
Minerais , Sideróforos , Filogenia
4.
Environ Microbiol ; 24(2): 784-802, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33817942

RESUMO

Mineral weathering by microorganisms is considered to occur through a succession of mechanisms based on acidification and chelation. While the role of acidification is established, the role of siderophores is difficult to disentangle from the effect of the acidification. We took advantage of the ability of strain Collimonas pratensis PMB3(1) to weather minerals but not to acidify depending on the carbon source to address the role of siderophores in mineral weathering. We identified a single non-ribosomal peptide synthetase (NRPS) responsible for siderophore biosynthesis in the PMB3(1) genome. By combining iron-chelating assays, targeted mutagenesis and chemical analyses (HPLC and LC-ESI-HRMS), we identified the siderophore produced as malleobactin X and how its production depends on the concentration of available iron. Comparison with the genome sequences of other collimonads evidenced that malleobactin production seems to be a relatively conserved functional trait, though some collimonads harboured other siderophore synthesis systems. We also revealed by comparing the wild-type strain and its mutant impaired in the production of malleobactin that the ability to produce this siderophore is essential to allow the dissolution of hematite under non-acidifying conditions. This study represents the first characterization of the siderophore produced by collimonads and its role in mineral weathering.


Assuntos
Oxalobacteraceae , Ferro , Minerais , Sideróforos/genética , Tempo (Meteorologia)
5.
Biotechnol Appl Biochem ; 69(4): 1438-1450, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34155677

RESUMO

A new glyco-phenol was produced by the coupling between glucosamine (Glu) and ferulic acid (FA) using Myceliophthora thermophila laccase as biocatalyst in mild conditions (distilled water and 30°C) as an environmentally friendly process. Results indicated that the enzymatic reaction created a new derivative (FA-Glu), produced from coupling between Glu and FA by covalent bonds. By the high production of (FA-Glu) derivative and its stability, the optimal ratio of (FA:Glu) was of (1:1) at optimal time reaction of 6 h. Under these optimal conditions, almost 55% of -NH2 groups on Glu were bound with FA oxidation products. The new derivative showed higher hydrophobic character than Glu due to the presence of FA in its structure. Liquid chromatography-mass spectrometry analysis showed that (FA-Glu) derivative exhibited a molecular mass at MM 713 g/mol containing one Glu molecule and three FA molecules after decarboxylation. Furthermore, the new derivative presented good antioxidant and antiproliferative activities in comparison with Glu and FA. These results suggest that the enzymatic conjugation between Glu and FA is a promising process to produce a new glyco-phenol having good functional properties for potential applications.


Assuntos
Glucosamina , Fenol , Ácidos Cumáricos/química , Fenóis/química
6.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614154

RESUMO

The aim of the present work was to obtain microbial lipids (single-cell oils and SCOs) from oleaginous yeast cultivated on biodiesel-derived glycerol and subsequently proceed to the enzymatic synthesis of high-value biosurfactant-type molecules in an aqueous medium, with SCOs implicated as acyl donors (ADs). Indeed, the initial screening of five non-conventional oleaginous yeasts revealed that the most important lipid producer was the microorganism Cryptococcus curvatus ATCC 20509. SCO production was optimised according to the nature of the nitrogen source and the initial concentration of glycerol (Glyc0) employed in the medium. Lipids up to 50% w/w in dry cell weight (DCW) (SCOmax = 6.1 g/L) occurred at Glyc0 ≈ 70 g/L (C/N ≈ 80 moles/moles). Thereafter, lipids were recovered and were subsequently used as ADs in the N-acylation reaction catalysed by aminoacylases produced from Streptomyces ambofaciens ATCC 23877 under aqueous conditions, while Candida antarctica lipase B (CALB) was used as a reference enzyme. Aminoacylases revealed excellent activity towards the synthesis of acyl-lysine only when free fatty acids (FAs) were used as the AD, and the rare regioselectivity in the α-amino group, which has a great impact on the preservation of the functional side chains of any amino acids or peptides. Aminoacylases presented higher α-oleoyl-lysine productivity and final titer (8.3 g/L) with hydrolysed SCO than with hydrolysed vegetable oil. The substrate specificity of both enzymes towards the three main FAs found in SCO was studied, and a new parameter was defined, viz., Specificity factor (Sf), which expresses the relative substrate specificity of an enzyme towards a FA present in a FA mixture. The Sf value of aminoacylases was the highest with palmitic acid in all cases tested, ranging from 2.0 to 3.0, while that of CALB was with linoleic acid (0.9-1.5). To the best of our knowledge, this is the first time that a microbial oil has been successfully used as AD for biosurfactant synthesis. This bio-refinery approach illustrates the concept of a state-of-the-art combination of enzyme and microbial technology to produce high-value biosurfactants through environmentally friendly and economically sound processes.


Assuntos
Glicerol , Toupeiras , Animais , Glicerol/metabolismo , Aminoácidos/metabolismo , Lisina/metabolismo , Toupeiras/metabolismo , Leveduras/metabolismo , Óleos de Plantas/metabolismo , Biocombustíveis , Ácidos Graxos/metabolismo
7.
Anal Bioanal Chem ; 413(2): 315-329, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33386417

RESUMO

Production of iron-chelating peptides from protein hydrolysates requires robust and adequate screening methods to optimize their purification and subsequently valorize their potential antioxidant properties. An original methodology was developed for direct and sensitive screening of iron(II)-chelating peptides based on ion-pair reverse phase liquid chromatography (IP-RPLC) coupled to high-resolution mass spectrometry (HRMS). Peptide mixture was first added to iron(II) solution to form iron(II)-peptide complexes. Then IP-RPLC-HRMS analysis was conducted on this iron-peptide mixture and on the iron-free peptide solution for comparative mass spectra analysis. This protocol, initially applied to a range of low molecular weight standard peptides, allowed detection of [(Peptide-H)+56FeII]+ complex ion for iron(II)-chelating peptides (GGH, EAH, DAH, ßAH, DMH, DTH, DSH). GGH was added in complex peptide mixtures and targeted analysis of [(GGH-H)+56FeII]+ complex showed a limit of detection (LOD) below 0.77 mg L-1 of GGH. This protocol was finally tested in combination with metabolomics software and additional digital processing for non-targeted search for iron(II)-chelating peptides. Applicability of this new screening methodology has been validated by detection of GGH as iron(II)-chelating peptide when added at 0.77 mg L-1 in casein hydrolysate. Graphical abstract.


Assuntos
Quelantes/química , Cromatografia Líquida/métodos , Ferro/química , Metabolômica/métodos , Peptídeos/química , Hidrolisados de Proteína/química , Proteínas/química , Caseínas/química , Processamento Eletrônico de Dados , Hidrólise , Ligantes , Limite de Detecção , Espectrometria de Massas , Espectrometria de Massas por Ionização por Electrospray
8.
J Sep Sci ; 43(11): 2031-2041, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32125758

RESUMO

Some metal-chelating peptides have antioxidant properties, with potential nutrition, health, and cosmetics applications. This study aimed to simulate their separation on immobilized metal ion affinity chromatography from their affinity constant for immobilized metal ion determined in surface plasmon resonance, both technics are based on peptide-metal ion interactions. In our approach, first, the affinity constant of synthetic peptides was determined by surface plasmon resonance and used as input data to numerically simulate the chromatographic separation with a transport-dispersive model based on Langmuir adsorption isotherm. Then, chromatographic separation was applied on the same peptides to determine their retention time and compare this experimental tR with the simulated tR obtained from simulation from surface plasmon resonance data. For the investigated peptides, the relative values of tR were comparable. Hence, our study demonstrated the pertinence of such numerical simulation correlating immobilized metal ion affinity chromatography and surface plasmon resonance.


Assuntos
Quelantes/isolamento & purificação , Peptídeos/isolamento & purificação , Ressonância de Plasmônio de Superfície , Elementos de Transição/isolamento & purificação , Adsorção , Quelantes/química , Cromatografia de Afinidade , Peptídeos/química , Elementos de Transição/química
9.
Int J Mol Sci ; 21(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260309

RESUMO

Polyunsaturated fatty acids (PUFA) are important in reducing the risk for cardiovascular, metabolic and neurodegenerative diseases. Chia (Salvia hispanica L.) seeds contain high levels of omega-3 PUFA, α-linolenic acid (ALA) in particular, and are a potential source for development of omega-3 PUFA-based products. Our objective was to obtain and characterize chia seed lipids, focusing on phospholipid fraction, and to investigate their use in the formulation of nanoemulsions (NE) and nanoliposomes (NL). Solvent-based lipid extraction was performed on the ORURO variety of chia seeds, followed by lipid composition analysis using GC and LC-MS and physico-chemical characterization of chia NL and NE. Folch extraction led to a slightly higher yield of ALA as compared to Soxhlet extraction. Lipid, phospholipid, and fatty acid composition analysis of the oil and residue revealed that the residue was rich in phospholipids; these were used to prepare NE and NL. Physico-chemical characterization showed that NE and NL were generally spherical (transmission electron microscopy), with a size of <120 nm under hydrated conditions that remained stable over 5 days. In conclusion, chia oil and phospholipid-rich residue can be used to obtain stable NL or NE using a simple method that involves spontaneous emulsification during lipid hydration, which potentially may be useful in cosmetics, pharmaceutical, and other health applications.


Assuntos
Emulsões/química , Lipídeos/química , Lipossomos/química , Nanopartículas/química , Salvia/química , Sementes/química , Ácidos Graxos/análise , Lipídeos/isolamento & purificação , Nanopartículas/ultraestrutura , Tamanho da Partícula , Padrões de Referência
10.
Biotechnol Bioeng ; 116(5): 985-993, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30636319

RESUMO

The cell-specific growth rate (µ) is a critical process parameter for antibody production processes performed by animal cell cultures, as it describes the cell growth and reflects the cell physiological state. When there are changes in these parameters, which are indicated by variations of µ, the synthesis and the quality of antibodies are often affected. Therefore, it is essential to monitor and control the variations of µto assure the antibody production and achieve high product quality. In this study, a novel approach for on-line estimation of µ was developed based on the process analytical technology initiative by using an in situ dielectric spectroscopy. Critical moments, such as significant µ decreases, were successfully detected by this method, in association with changes in cell physiology as well as with an accumulation of nonglycosylated antibodies. Thus, this method was used to perform medium renewals at the appropriate time points, maintaining the values of µ close to its maximum. Using this method, we demonstrated that the physiological state of cells remained stable, the quantity and the glycosylation quality of antibodies were assured at the same time, leading to better process performances compared with the reference feed-harvest cell cultures carried out by using off-line nutrient measurements.


Assuntos
Anticorpos Monoclonais/biossíntese , Técnicas de Cultura de Células , Imunoglobulina G/biossíntese , Animais , Reatores Biológicos , Células CHO , Cricetulus
11.
Pharm Biol ; 54(10): 2033-43, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26983347

RESUMO

Context Catharanthus roseus (L.) G. Don (Apocynaceae) is still one of the most important sources of terpene indole alkaloids including anticancer and hypertensive drugs as vincristine and vinblastine. These final compounds have complex pathway and many enzymes are involved in their biosynthesis. Indeed, ajmalicine and catharanthine are important precursors their increase can lead to enhance levels of molecules of interest. Objective This study aims at selecting the highest yield of hairy root line(s) and at identifying best times for further treatments. We study kinetics growth and alkaloids (ajmalicine and catharanthine) accumulation of three selected hairy root lines during the culture cycle in order to determine the relationship between biomass production and alkaloids accumulation. Materials and methods Comparative analysis has been carried out on three selected lines of Catharanthus roseus hairy roots (LP10, LP21 and L54) for their kinetics of growth and the accumulation of ajamalicine and catharanthine, throughout a 35-day culture cycle. The methanolic extract for each line in different times during culture cycle is analyzed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Results Maximum accumulation of the alkaloids is recorded for LP10 line in which the peak of ajmalicine and catharanthine accumulation reached to 3.8 and 4.3 mg/g dry weight (DW), respectively. This increase coincides with an exponential growth phase. Discussion and conclusion Our results suggest that the evolution of accumulation of ajmalicine and catharanthine are positively correlated with the development of the biomass growth. Significantly, for LP10 line the most promising line to continue optimizing the production of TIAs. Additionally, the end of exponential phase remains the best period for elicitor stimuli.


Assuntos
Agrobacterium/fisiologia , Biomassa , Catharanthus/metabolismo , Raízes de Plantas/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Alcaloides de Vinca/metabolismo , Agrobacterium/genética , Catharanthus/genética , Catharanthus/crescimento & desenvolvimento , Catharanthus/microbiologia , Cromatografia Líquida , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Cinética , Metanol/química , Fitoterapia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas Medicinais , Solventes/química , Espectrometria de Massas em Tandem , Transformação Genética
12.
Plant J ; 77(4): 627-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24354545

RESUMO

Furanocoumarins constitute a sub-family of coumarin compounds with important defense properties against pathogens and insects, as well as allelopathic functions in plants. Furanocoumarins are divided into two sub-groups according to the alignment of the furan ring with the lactone structure: linear psoralen and angular angelicin derivatives. Determination of furanocoumarin type is based on the prenylation position of the common precursor of all furanocoumarins, umbelliferone, at C6 or C8, which gives rise to the psoralen or angelicin derivatives, respectively. Here, we identified a membrane-bound prenyltransferase PcPT from parsley (Petroselinum crispum), and characterized the properties of the gene product. PcPT expression in various parsley tissues is increased by UV irradiation, with a concomitant increase in furanocoumarin production. This enzyme has strict substrate specificity towards umbelliferone and dimethylallyl diphosphate, and a strong preference for the C6 position of the prenylated product (demethylsuberosin), leading to linear furanocoumarins. The C8-prenylated derivative (osthenol) is also formed, but to a much lesser extent. The PcPT protein is targeted to the plastids in planta. Introduction of this PcPT into the coumarin-producing plant Ruta graveolens showed increased consumption of endogenous umbelliferone. Expression of PcPT and a 4-coumaroyl CoA 2'-hydroxylase gene in Nicotiana benthamiana, which does not produce furanocoumarins, resulted in formation of demethylsuberosin, indicating that furanocoumarin production may be reconstructed by a metabolic engineering approach. The results demonstrate that a single prenyltransferase, such as PcPT, opens the pathway to linear furanocoumarins in parsley, but may also catalyze the synthesis of osthenol, the first intermediate committed to the angular furanocoumarin pathway, in other plants.


Assuntos
Dimetilaliltranstransferase/metabolismo , Furocumarinas/metabolismo , Regulação Enzimológica da Expressão Gênica , Petroselinum/enzimologia , Ruta/enzimologia , Sequência de Bases , Cumarínicos/química , Cumarínicos/metabolismo , Dimetilaliltranstransferase/genética , Furocumarinas/química , Regulação da Expressão Gênica de Plantas , Genes Reporter , Dados de Sequência Molecular , Cebolas/citologia , Cebolas/genética , Cebolas/metabolismo , Especificidade de Órgãos , Petroselinum/genética , Petroselinum/efeitos da radiação , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Ruta/genética , Ruta/efeitos da radiação , Análise de Sequência de DNA , Especificidade por Substrato , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/efeitos da radiação , Raios Ultravioleta , Umbeliferonas/química , Umbeliferonas/metabolismo
13.
Chembiochem ; 16(9): 1357-64, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25851784

RESUMO

Modular polyketide synthases (PKSs) are multidomain multienzymes responsible for the biosynthesis in bacteria of a wide range of polyketide secondary metabolites of clinical value. The stereochemistry of these molecules is an attractive target for genetic engineering in attempts to produce analogues exhibiting novel therapeutic properties. The exchange of ketoreductase (KR) domains in model PKSs has been shown in several cases to predictably alter the configuration of the ß-hydroxy functionalities but not of the α-methyl groups. By systematic screening of a broad panel of KR domains, we have identified two donor KRs that afford modification of α-methyl group stereochemistry. To the best of our knowledge, this provides the first direct in vivo evidence of KR-catalyzed epimerization. However, none of the introduced KRs afforded simultaneous alteration of methyl and hydroxy configurations in high yield. Therefore, swapping of whole modules might be necessary to achieve such changes in stereochemistry.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Engenharia de Proteínas , Streptomyces/enzimologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeos/química , Estrutura Terciária de Proteína , Estereoisomerismo , Streptomyces/química , Streptomyces/genética , Streptomyces/metabolismo , Especificidade por Substrato
14.
Plants (Basel) ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592935

RESUMO

The current study aimed to investigate the chemical composition, antioxidant, antibacterial, and cytotoxic properties of three extracts (hexane, dichloromethane, and methanol) from Cynoglossum tubiflorus. The composition of the methanolic extract was elucidated using HPLC-HESI-MS/MS analysis. The antioxidant effect was examined using NO, DPPH, FRAP, and TAC assays. Antimicrobial activity was evaluated by broth microdilution using various bacterial strains such as S. aureus, S. epidermidis, P. aeruginosa, E. coli, and K. pneumoniae. Structural disruptions in Gram-positive bacteria were visualized using scanning electron microscopy (SEM). Cytotoxic effects were evaluated on human MRC-5 in culture according to the MTT assay. The outcomes suggest that methanol extract contained a high amount of phenolic compounds (254.35 ± 0.360 mg GAE/g DE and 211.59 ± 0.939 mg QE/g DE). By applying the HPLC-HESI-MS/MS analysis, 32 compounds were identified, including phenolic acids, flavonoids, lignans, and fatty acids. This extract showed strong antioxidant (IC50 = 0.043 ± 0.001 mg/mL) and antimicrobial (MIC = 156 µg/mL) activities. The SEM suggests that cells exhibited membrane distortions characterized by surface depressions and alterations in bacterial shape, including dents, when compared to untreated cells. The in vitro cytotoxicity effect on human MRC-5 cells showed no toxicity effects at a concentration of 600 µg/mL. In silico analysis predicted low toxicity for all tested compounds across four different administration routes. This research indicates that this plant could be explored as a powerful source of natural drugs to target pathogens, with applications in the food, pharmaceutical, and medical industries.

15.
Food Funct ; 15(7): 3300-3326, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488016

RESUMO

Metal-chelating peptides, which form metal-peptide coordination complexes with various metal ions, can be used as biofunctional ingredients notably to enhance human health and prevent diseases. This review aims to discuss recent insights into food-derived metal-chelating peptides, the strategies set up for their discovery, their study, and identification. After understanding the overall properties of metal-chelating peptides, their production from food-derived protein sources and their potential applications will be discussed, particularly in nutritional, cosmetics and pharmaceutical fields. In addition, the review provides an overview of the last decades of progress in discovering food-derived metal-chelating peptides, addressing several screening, separation and identification methodologies. Furthermore, it emphasizes the methods used to assess peptide-metal interaction, allowing for better understanding of chemical and thermodynamic parameters associated with the formation of peptide-metal coordination complexes, as well as the specific amino acid residues that play important roles in the metal ion coordination.


Assuntos
Complexos de Coordenação , Humanos , Complexos de Coordenação/química , Peptídeos/química , Quelantes/química , Metais , Preparações Farmacêuticas
16.
Plant J ; 70(3): 460-70, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22168819

RESUMO

Coumarins are important compounds that contribute to the adaptation of plants to biotic or abiotic stresses. Among coumarins, umbelliferone occupies a pivotal position in the plant phenylpropanoid network. Previous studies indicated that umbelliferone is derived from the ortho-hydroxylation of p-coumaric acid by an unknown biochemical step to yield 2,4-dihydroxycinnamic acid, which then undergoes spontaneous lactonization. Based on a recent report of a gene encoding a 2-oxoglutarate-dependent dioxygenase from Arabidopsis thaliana that exhibited feruloyl CoA 6'-hydroxylase activity (Bourgaud et al., 2006), we combined a bioinformatic approach and a cDNA library screen to identify an orthologous ORF (Genbank accession number JF799117) from Ruta graveolens L. This ORF shares 59% amino acid identity with feruloyl CoA 6'-hydroxylase, was functionally expressed in Escherichia coli, and converted feruloyl CoA into scopoletin and p-coumaroyl CoA into umbelliferone with equal activity. Its bi-functionality was further confirmed in planta: transient expression of JF799117 in Nicotiana benthamiana yielded plants with leaves containing high levels of umbelliferone and scopoletin when compared to control plants, which contained barely detectable traces of these compounds. The expression of JF799117 was also tightly correlated to the amount of umbelliferone that was found in UV-elicited R. graveolens leaves. Therefore, JF799117 encodes a p-coumaroyl CoA 2'-hydroxylase in R. graveolens, which represents a previously uncharacterized step in the synthesis of umbelliferone in plants. Psoralen, which is an important furanocoumarin in R. graveolens, was found to be a competitive inhibitor of the enzyme, and it may exert this effect through negative feedback on the enzyme at an upstream position in the pathway.


Assuntos
Dioxigenases/metabolismo , Ruta/enzimologia , Umbeliferonas/biossíntese , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência Conservada , Cumarínicos/análise , Cumarínicos/isolamento & purificação , Cumarínicos/metabolismo , Dioxigenases/antagonistas & inibidores , Dioxigenases/genética , Dioxigenases/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/genética , Furocumarinas/metabolismo , Furocumarinas/farmacologia , Expressão Gênica/genética , Dados de Sequência Molecular , Filogenia , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Caules de Planta/química , Caules de Planta/enzimologia , Caules de Planta/genética , RNA de Plantas/metabolismo , Ruta/química , Ruta/genética , Escopoletina/análise , Escopoletina/metabolismo , Alinhamento de Sequência , Nicotiana/enzimologia , Nicotiana/genética , Transgenes , Umbeliferonas/análise , Umbeliferonas/metabolismo
17.
Nat Commun ; 14(1): 1327, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899003

RESUMO

During biosynthesis by multi-modular trans-AT polyketide synthases, polyketide structural space can be expanded by conversion of initially-formed electrophilic ß-ketones into ß-alkyl groups. These multi-step transformations are catalysed by 3-hydroxy-3-methylgluratryl synthase cassettes of enzymes. While mechanistic aspects of these reactions have been delineated, little information is available concerning how the cassettes select the specific polyketide intermediate(s) to target. Here we use integrative structural biology to identify the basis for substrate choice in module 5 of the virginiamycin M trans-AT polyketide synthase. Additionally, we show in vitro that module 7, at minimum, is a potential additional site for ß-methylation. Indeed, analysis by HPLC-MS coupled with isotopic labelling and pathway inactivation identifies a metabolite bearing a second ß-methyl at the expected position. Collectively, our results demonstrate that several control mechanisms acting in concert underpin ß-branching programming. Furthermore, variations in this control - whether natural or by design - open up avenues for diversifying polyketide structures towards high-value derivatives.


Assuntos
Streptomyces , Metilação , Virginiamicina/biossíntese , Virginiamicina/química , Streptomyces/metabolismo , Ligação Proteica , Modelos Moleculares , Estrutura Terciária de Proteína , Especificidade por Substrato
18.
Food Chem ; 405(Pt A): 134788, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36370575

RESUMO

Soy and pea proteins are two rich sources of essential amino acids. The hydrolysis of these proteins reveals functional and bioactive properties of the produced small peptide mixtures. In our study, we employed the hydrolysis of soy and pea protein isolates with the endopeptidases Alcalase® and Protamex®, used alone or followed by the exopeptidase Flavourzyme®. The sequential enzyme treatments were the most efficient regarding the degree of hydrolysis. Then, soy and pea protein hydrolysates (SPHs and PPHs, respectively) were ultrafiltrated in order to select peptides of molecular weight ≤ 1 kDa. Whatever the protein source or the hydrolysis treatment, the hydrolysates showed similar molecular weight distributions and amino acid compositions. In addition, all the ultrafiltrated hydrolysates possess metal-chelating activities, as determined by UV-spectrophotometry and Surface Plasmon Resonance (SPR). However, the SPR data revealed better chelating affinities in SPHs and PPHs when produced by sequential enzymatic treatment.


Assuntos
Pisum sativum , Hidrolisados de Proteína , Hidrolisados de Proteína/química , Pisum sativum/metabolismo , Subtilisinas/metabolismo , Hidrólise , Quelantes , Peptídeos/química , Antioxidantes
19.
Anal Bioanal Chem ; 403(7): 1939-49, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22543694

RESUMO

A new method to predict elementary amino acid (AA) composition of peptides (molar mass <1,000 g/mol) is described. This procedure is based on a computer-aided method using three combined analyses-reversed phase liquid chromatography (RPLC), hydrophilic interaction chromatography (HILIC) and capillary electrophoresis coupled with mass spectrometry-and using a software calculating all possible amino acid combinations from the mass of any given peptide. The complementarity between HILIC and RPLC was demonstrated. Peptide retention prediction in HILIC was successfully modelled, and the achieved prediction accuracy was as high as r²=0.97. This mathematical model, based on amino acid retention contributions and peptide length, provided the information about peptide hydrophilicity that was not redundant with its hydrophobicity. Correlations between respectively the hydrophobicity coefficients and RPLC retention time, hydrophilicity and HILIC retention time, and electrophoretic mobility and migration time were used for ranking all potential AA combinations corresponding to the given mass. The essential contribution of HILIC in this identification strategy and the need to combine the three models to significantly increase identification capabilities were both shown. Applied to an 18-standard peptide mixture, the identification procedure enabled the actual AA combination determination of the 14 di- to pentapeptides, in addition to an over 98 % reduction of possible combination numbers for the four hexapeptides. This procedure was then applied to the identification of 24 unknown peptides in a rapeseed protein hydrolysate. The effective AA composition was found for ten peptides, whereas for the 14 other peptides, the number of possible combinations was reduced by over 95 % thanks to the association of the three analyses. Finally, as a result of the information provided by the analytical techniques about peptides present in the mixture, the proposed method could become a highly valuable tool to recover bioactive peptides from undefined protein hydrolysates.


Assuntos
Misturas Complexas , Peptídeos/química , Cromatografia Líquida , Espectrometria de Massas
20.
Indian J Microbiol ; 52(3): 420-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23997334

RESUMO

This study describes the biodegradation of phenanthrene in aqueous media in the presence and in the absence of a surfactant, Brij 30. Biodegradations were performed using either Pseudomonas putida DSMZ 8368 or a bacterial consortium Pyr01 isolated from one PAHs-polluted site. P. putida degraded phenanthrene to form 1-hydroxy-2-naphthoic acid (1H2Na) as the major metabolite. LC-MS analysis revealed the production of complementary intermediates in the presence of Brij 30, showing intense ions at mass-to-charge ratios (m/z) 97 and 195. Higher phenanthrene biodegradation rate was obtained in the presence of Brij 30. Conversely, in the case of Pyr01consortium, the addition of Brij 30 (0.5 g L(-1)) had a negative effect on biodegradation: no phenanthrene biodegradation products were detected in the medium, whereas a production of several intermediates (m/z 97, 195 and 293) was obtained without surfactant. New results on phenanthrene metabolism by P. putida DSMZ 8368 and Pyr01 consortium in the presence and in the absence of Brij 30 we obtained. They confirm that the knowledge of the effect of a surfactant on bacterial cultures is crucial for the optimization of surfactant-enhanced PAHs biodegradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA