Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Eur J Appl Physiol ; 124(7): 2171-2181, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38436666

RESUMO

PURPOSE: The interpolated twitch technique (ITT) is often used to assess voluntary activation during isometric contractions; however, this may have limited relevance to dynamic contractions. Although the ITT has been applied to relatively slow isokinetic contractions (< 150°/s), it has received limited consideration during unconstrained velocity (i.e., isotonic) contractions, despite their relevance to natural movements. Here, we explored the ITT during isotonic knee extension contractions using a modified dynamometer. METHODS: Young males (n = 6) and females (n = 4) performed isometric and isotonic knee extension contractions of sub-maximal and maximal intensities with doublet (150 Hz) muscle belly stimulations to assess voluntary activation. Following each voluntary isotonic contraction (velocity range ~ 35°/s to ~ 275°/s), resting potentiated doublets were evaluated during passive joint rotation at the same angular velocity achieved during voluntary efforts, to account for force-velocity characteristics. Correlations between voluntary activation and the proportion of maximal torque or power were evaluated for isometric and isotonic contractions, respectively. RESULTS: Isometric voluntary activation was strongly correlated with increasing torque output (r = 0.96, p < 0.001). Doublet torque during passive joint rotation displayed a hyperbolic relationship with increasing angular velocity (r = 0.98, p < 0.001). Isotonic voluntary activation was strongly correlated with increasing power output (r = 0.89, p < 0.001). During maximal effort contractions, no differences were observed in voluntary activation between isometric and isotonic conditions (89.4% vs. 89.2%, p = 0.904). CONCLUSIONS: The ITT is a valid approach to evaluate voluntary activation during an isotonic contraction using a modified dynamometer. Participants were able to achieve a similar high level of voluntary activation during isometric and isotonic contractions.


Assuntos
Contração Isométrica , Contração Isotônica , Articulação do Joelho , Músculo Esquelético , Torque , Humanos , Masculino , Feminino , Contração Isotônica/fisiologia , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Adulto , Articulação do Joelho/fisiologia , Adulto Jovem , Joelho/fisiologia , Contração Muscular/fisiologia
2.
J Am Chem Soc ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779668

RESUMO

The surface functionalization of 2D transition metal carbides or nitrides, so-called MXenes, is one of the fundamental levers allowing to deeply modify their physicochemical properties. Beyond new approaches to control this pivotal parameter, the ability to unambiguously assess their surface chemistry is thus key to expand the application fields of this large class of 2D materials. Using a combination of experiments and state of the art density functional theory calculations, we show that the NMR signal of the carbon─the element common to all MXene carbides and corresponding MAX phase precursors─is extremely sensitive to the MXene functionalization, although carbon atoms are not directly bonded to the surface groups. The simulations include the orbital part to the NMR shielding and the contribution from the Knight shift, which is crucial to achieve good correlation with the experimental data, as demonstrated on a set of reference MXene precursors. Starting with the Ti3C2Tx MXene benchmark system, we confirm the high sensitivity of the 13C NMR shift to the exfoliation process. Developing a theoretical protocol to straightforwardly simulate different surface chemistries, we show that the 13C NMR shift variations can be quantitatively related to different surface compositions and number of surface chemistry variants induced by the different etching agents. In addition, we propose that the etching agent affects not only the nature of the surface groups but also their spatial distribution. The direct correlation between surface chemistry and 13C NMR shift is further confirmed on the V2CTx, Mo2CTx, and Nb2CTx MXenes.

3.
Crit Care Med ; 51(2): e24-e36, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661463

RESUMO

OBJECTIVE: Significant variations exist in the use of respiratory muscle ultrasound in intensive care with no society-level consensus on the optimal methodology. This systematic review aims to evaluate, synthesize, and compare the clinimetric properties of different image acquisition and analysis methodologies. DATA SOURCES: Systematic search of five databases up to November 24, 2021. STUDY SELECTION: Studies were included if they enrolled at least 50 adult ICU patients, reported respiratory muscle (diaphragm or intercostal) ultrasound measuring either echotexture, muscle thickness, thickening fraction, or excursion, and evaluated at least one clinimetric property. Two independent reviewers assessed titles, abstracts, and full text against eligibility. DATA EXTRACTION: Study demographics, ultrasound methodologies, and clinimetric data. DATA SYNTHESIS: Sixty studies, including 5,025 patients, were included with 39 studies contributing to meta-analyses. Most commonly measured was diaphragm thickness (DT) or diaphragm thickening fraction (DTF) using a linear transducer in B-mode, or diaphragm excursion (DE) using a curvilinear transducer in M-mode. There are significant variations in imaging methodology and acquisition across all studies. Inter- and intrarater measurement reliabilities were generally excellent, with the highest reliability reported for DT (ICC, 0.98; 95% CI, 0.94-0.99). Pooled data demonstrated acceptable to excellent accuracy for DT, DTF, and DE to predicting weaning outcome after 48 to 72 hours postextubation (DTF AUC, 0.79; 95% CI, 0.73-0.85). DT imaging was responsive to change over time. Only three eligible studies were available for intercostal muscles. Intercostal thickening fraction was shown to have excellent accuracy of predicting weaning outcome after 48-hour postextubation (AUC, 0.84; 95% CI, 0.78-0.91). CONCLUSIONS: Diaphragm muscle ultrasound is reliable, valid, and responsive in ICU patients, but significant variation exists in the imaging acquisition and analysis methodologies. Future work should focus on developing standardized protocols for ultrasound imaging and consider further research into the role of intercostal muscle imaging.


Assuntos
Diafragma , Desmame do Respirador , Adulto , Humanos , Desmame do Respirador/métodos , Reprodutibilidade dos Testes , Ultrassonografia/métodos , Diafragma/diagnóstico por imagem , Cuidados Críticos
4.
J Chem Phys ; 156(15): 154508, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35459291

RESUMO

The use of high-pressure synthesis conditions to produce I-bearing aluminoborosilicate represents a promising issue for the immobilization of 129I radioisotope. Furthermore, iodine appears to be more solubilized in glasses under its iodate (I5+) form rather than its iodide (I-) form. Currently, the local atomic environment for iodine is poorly constrained for I- and virtually unknown for I5+ or I7+. We used I K-edge x-ray absorption spectroscopy conducted at 20 K for determining the local atomic environment of iodine dissolved as I-, I5+, and I7+ in a series of aluminoborosilicate glasses. We determined that I- is surrounded by either Na+ or Ca2+ in agreement with previous studies. The signal collected from EXAFS reveals that I5+ is surrounded invariably by three oxygen atoms forming an IO3 - cluster charge compensated by Na+ and/or Ca2+. The I-O distance in iodate dissolved in glass is comparable to the I-O distance in crystalline compounds at ∼1.8 Å. The distance to the second nearest neighbor (Na+ or Ca2+) is also constant at ∼3.2 Å. This derived distance is identical to the distance between I- and Na+ or Ca2+ in the case of iodide local environment. For one sample containing iodate and periodate, the distinction between the local environment of I5+ and I7+ could not be made, suggesting that both environments have comparable EXAFS signals.

5.
Eur J Appl Physiol ; 122(12): 2597-2606, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36098858

RESUMO

PURPOSE: Prolonged low-frequency force depression (PLFFD) occurs following both dynamic and static fatiguing tasks, but it has been assessed predominately using measures of isometric torque. However, it is unknown whether PLFFD induced during dynamic tasks is adequately characterized by isometric torque, which excludes velocity and power. The purpose of this study was to compare PLFFD assessed using isometric torque and isotonic power following a concentric fatiguing task. METHODS: Young (18-31 years) males (n = 9) and females (n = 4) performed isotonic plantar flexion contractions until a ~ 75% reduction in peak power. Isotonic and isometric contractions were electrically evoked at 10 Hz and 50 Hz via tibial nerve stimulation. Isotonic and isometric PLFFD was assessed as the ratio of 10 to 50 Hz for power and torque, respectively. Recovery was assessed immediately, and at 2.5, 5, 10, 20, and 30 min after task termination. RESULTS: Relative to baseline, 10:50 Hz ratio assessed using isotonic power was reduced more than isometric torque (30 min 41 ± 17 vs. 25 ± 12% reduction, p = 0.001); however, both contraction modes displayed similar trajectories throughout recovery (p = 0.906). The larger reduction in isotonic 10:50 Hz ratio was due to greater impairments in 10 Hz power compared to 10 Hz isometric torque (30 min 38 ± 20 vs. 21 ± 11% reduction, p < 0.001). CONCLUSION: The similar trajectories of 10:50 Hz ratios throughout recovery indicate that PLFFD can be adequately characterized using either isometric torque or isotonic power.


Assuntos
Depressão , Fadiga Muscular , Masculino , Feminino , Humanos , Torque , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Contração Isométrica/fisiologia , Eletromiografia
6.
J Ultrasound Med ; 41(9): 2355-2364, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34921442

RESUMO

OBJECTIVES: Ultrasound measurements of muscle echo intensity are commonly used surrogates of muscle composition (eg, intramuscular adipose tissue). However, given that soundwaves are increasingly attenuated with tissue depth, the interpretation of echo intensity may be confounded by adipose and skeletal muscle thickness. Our objectives are to compare the associations between adipose or muscle tissue thickness and rectus femoris echo intensity in younger and older males and females. METHODS: Participants included in this analysis were derived from 3 previously published cohorts of younger (<45 years) and older (≥60 years) males and females. Ultrasound images of the rectus femoris were evaluated for muscle thickness, echo intensity, and subcutaneous adipose tissue thickness. RESULTS: Older adults (n: 49 males, 19 females) had a higher body mass index (P = .001) compared with younger adults (n: 37 males, 49 females). Muscle thickness was negatively associated with echo intensity in older males (r = -0.59) and females (r = -0.53), whereas no associations were observed in younger males (r = 0.00) or females (r = -0.11). Subcutaneous adipose tissue thickness displayed no associations with echo intensity in any group. CONCLUSIONS: Despite the known influence of subcutaneous adipose tissue thickness on beam attenuation, we observed no association with muscle echo intensity, indicating that adipose tissue correction may be required to better understand muscle echo intensity across differences in adiposity. The negative associations between muscle thickness and echo intensity in older, but not younger adults, suggests these associations may be related to the co-occurrence of skeletal muscle atrophy and intramuscular adipose tissue infiltration with advancing age.


Assuntos
Músculo Esquelético , Músculo Quadríceps , Tecido Adiposo/diagnóstico por imagem , Idoso , Feminino , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagem , Músculo Quadríceps/diagnóstico por imagem , Gordura Subcutânea/diagnóstico por imagem , Ultrassonografia/métodos
7.
Inorg Chem ; 60(4): 2406-2413, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33478208

RESUMO

The K3Sb4BO13 (KSBO) material undergoes an uncommon symmetry increase upon cooling, from triclinic symmetry at room temperature to monoclinic symmetry at low temperature. The first-order phase transition is accompanied by shrinkage of the unit cell, resulting in the transformation of every pair of head-to-tail triangular BO3 groups into one B2O6 unit featuring unique edge-sharing BO4 tetrahedra. This is the first material with B2O6 units formed through temperature lowering and exhibiting a B-O anionic framework composed uniquely of isolated edge-sharing BO4 tetrahedra. Several techniques including single-crystal X-ray diffraction experiments, Raman and 11B magic-angle-spinning NMR spectroscopies, and, for the first time, B K-edge electron energy loss spectroscopy were used to evidence the rare and discrete B2O6 units. The complete transformation of BO3 units into B2O6 units makes the KSBO compound the perfect candidate to extract information about B2O6 units whose signal can be unambiguously assigned.

8.
Aust Crit Care ; 34(4): 303-310, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33246863

RESUMO

BACKGROUND: Preserved skeletal muscle mass identified using computed tomography (CT) predicts improved outcomes from critical illness; however, CT imaging have few limitations such that it involves a radiation dose and transferring patients out of the intensive care unit. This study aimed to assess in critically ill patients the relationship between muscle mass estimates obtained using minimally invasive ultrasound techniques with both minimal and maximal pressure compared with CT images at the third lumber vertebra level. METHODS: All patients were treated in a single Australian intensive care unit. Eligible patients had paired assessments, within a 72-h window, of muscle mass by ultrasound (quadriceps muscle layer thickness in centimetres, with maximal and minimal pressure) and CT axial cross-sectional area (cm2). Data are presented as mean (standard deviation), median (interquartile range), and frequencies [n (%)]. RESULTS: Thirty-five patients [mean (standard deviation) age = 55 (16) years, median (interquartile range) body mass index = 27 (25-32) kg/m2, and 26 (74%) men] contributed 41 paired measurements. Quadriceps muscle thickness measured using the maximal pressure technique was a strong independent predictor of lumbar muscle cross-sectional area. Within a multivariate mixed linear regression model and adjusting for sex, age, and body mass index, for every 1 cm increase in quadriceps muscle layer thickness, the lumbar muscle cross-sectional area increased by 35 cm2 (95% confidence interval = 11-59 cm2). Similar univariate associations were observed using minimal pressure; however, as per multivariate analysis, there was no strength in this relationship [8 cm2 (95% confidence interval = -5 to 22 cm2)]. CONCLUSION: Ultrasound assessment of the quadriceps muscle using maximal pressure reasonably predicts the skeletal muscle at the third lumbar vertebra level of critically ill patients. However, there is substantial uncertainty within these regression estimates, and this may reduce the current utility of this technique as a minimally invasive surrogate for CT assessment of skeletal muscle mass.


Assuntos
Estado Terminal , Tomografia Computadorizada por Raios X , Adulto , Austrália , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Quadríceps/diagnóstico por imagem , Ultrassonografia
9.
Inorg Chem ; 59(5): 2626-2630, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045226

RESUMO

In solid-state lighting (SSL) applications, hybrid zinc halide phosphors are a promising family because they meet specific criteria such as high color rendering, low cost, and nontoxicity. However, contrary to hybrid lead halide phosphors, their quantum efficiencies are low and the origin of this luminescence remains unclear. To unravel this origin and provide new insights into enhancement of this emission, four hybrid zinc halides have been investigated. These four compounds exhibit similar crystal structures but different photoluminescence properties. We show that photoemission requires the formation of Vk centers, which can be promoted by specific hydrogen bonding. We anticipate that the selection of a specific environment for the zinc halide units could lead to a promising family of low-cost and environmentally friendly phosphors for SSL.

10.
Angew Chem Int Ed Engl ; 59(7): 2802-2807, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31830354

RESUMO

Near-UV-pumped white-light-emitting diodes with ultra-high color rendering and decreased blue-light emission is highly desirable. However, discovering a single-phase white light emitter with such characteristics remains challenging. Herein, we demonstrate that Mn doping as low as 0.027 % in the hybrid post-perovskite type (TDMP)PbBr4 (TDMP=trans-2,5-dimethylpiperaziniium) enables to achieve a bright pure white emission replicating the spectrum of the sun's rays. Thus, a white phosphor exhibiting an emission with CIE coordinates (0.330, 0.365), a high photoluminescence quantum yield of 60 % (new record for white light emission of hybrid lead halides), and an ultra-high color rendering index (CRI=96, R9=91.8), corresponding to the record value for a single phase emitter was obtained. The investigation of the photoluminescence properties revealed how free excitons, self-trapped excitons, and low amount of Mn dopants are coupled to give rise to such pure white emission.

11.
J Am Chem Soc ; 141(32): 12619-12623, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31339315

RESUMO

Low-dimensional hybrid lead halides have recently been reported as efficient white light emitters. However, unlike lead halide 3D perovskites, most of the reported low-dimensional materials with broad-band emission crystallize in different structure types according to their halogen composition (i.e., Cl, Br, and I) for a selected organic molecule. Because of the absence of isostructural halide series, the role of chemistry in the self-trapping of the excitons at the origin of the broad-band emission remains unclear. Among the most efficient white phosphors, hybrid lead bromide (TDMP)PbBr4 (TDMP = trans-2,5-dimethylpiperazinium) built of post-perovskite type chains exhibits a record photoluminescence quantum yield for hybrid lead halides. In this article, the two new isostructural (TDMP)PbX4 chloride and iodide analogues could be synthesized and structurally characterized. A comparison of the optical properties of the lead halide series reveals a strong dependence of the nature of the halogen (Cl, Br, or I) on the trapping/detrapping of the excitons and the resulting emission intensities, wavelengths, and band broadness.

12.
Inorg Chem ; 57(20): 12624-12631, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30260231

RESUMO

CdIn2S4 and In2S3 compounds were both previously studied as buffer layers in CIGS-based thin-film solar cells, each of them exhibiting advantages and disadvantages. Thus, we naturally embarked on the study of the CdIn2S4-In2S3 system, and a series of Cd1- xIn2+2 x/3S4 (0 ≤ x ≤ 1) materials were prepared and characterized. Our results show that two solid solutions exist. The aliovalent substitution of cadmium(II) by indium(III) induces a structural transition at x ≈ 0.7 from cubic spinel Fd3̅ m to tetragonal spinel I41/ amd that is related to an ordering of cadmium vacancies. Despite this transition, the variation of optical gap is continuous and decreases from 2.34 to 2.11 eV going from CdIn2S4 to In2S3 while all compounds retain an n-type behavior. In contrast with the Al xIn2-xS3 solid solution, no saturation of the gap is observed. Moreover, XPS analyses indicate a difference between surface and volume composition of the grains for Cd-poor compounds. The use of Cd1- xIn2+2 x/3S4 compounds could be a good alternative to CdIn2S4 and In2S3 to improve CIGS/buffer interfaces with a compromise between photovoltaic conversion efficiency and cadmium content.

13.
Inorg Chem ; 56(19): 11779-11786, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28915017

RESUMO

The cationic and anionic disorder in the Cu2ZnSnSe4-Cu2ZnSnS4 (CZTSe-CZTS) system has been investigated through a chemical crystallography approach including X-ray diffraction (in conventional and resonant setup), 119Sn and 77Se NMR spectroscopy, and high-resolution transmission electron microscopy (HRTEM) techniques. Single-crystal XRD analysis demonstrates that the studied compounds behave as a solid solution with the kesterite crystal structure in the whole S/(S + Se) composition range. As previously reported for pure sulfide and pure selenide compounds, the 119Sn NMR spectroscopy study gives clear evidence that the level of Cu/Zn disorder in mixed S/Se compounds depends on the thermal history of the samples (slow cooled or quenched). This conclusion is also supported by the investigation of the 77Se NMR spectra. The resonant single-crystal XRD technique shows that regardless of the duration of annealing step below the order-disorder critical temperature the ordering is not a long-range phenomenon. Finally, for the very first time, HREM images of pure selenide and mixed S/Se crystals clearly show that these compounds have different microstructures. Indeed, only the mixed S/Se compound exhibits a mosaic-type contrast which could be the sign of short-range anionic order. Calculated images corroborate that HRTEM contrast is highly dependent on the nature of the anion as well as on the local anionic order.

14.
Inorg Chem ; 56(11): 6208-6213, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28530099

RESUMO

An original concept for the property tuning of semiconductors is demonstrated by the synthesis of a p-type zinc oxide (ZnO)-like metal-organic framework (MOF), (ZnC2O3H2)n, which can be regarded as a possible alternative for ZnO, a natural n-type semiconductor. When small oxygen-rich organic linkers are introduced to the Zn-O system, oxygen vacancies and a deep valence-band maximum, the two obstacles for generating p-type behavior in ZnO, are restrained and raised, respectively. Further studies of this material on the doping and photoluminescence behaviors confirm its resemblance to metal oxides (MOs). This result answers the challenges of generating p-type behavior in an n-type-like system. This concept reveals that a new category of hybrid materials, with an embedded continuous metal-oxygen network, lies between the MOs and MOFs. It provides concrete support for the development of p-type hybrid semiconductors in the near future and, more importantly, the enrichment of tuning possibilities in inorganic semiconductors.

15.
J Appl Toxicol ; 37(7): 792-805, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28074598

RESUMO

The replacement of animal use in testing for regulatory classification of skin sensitizers is a priority for US federal agencies that use data from such testing. Machine learning models that classify substances as sensitizers or non-sensitizers without using animal data have been developed and evaluated. Because some regulatory agencies require that sensitizers be further classified into potency categories, we developed statistical models to predict skin sensitization potency for murine local lymph node assay (LLNA) and human outcomes. Input variables for our models included six physicochemical properties and data from three non-animal test methods: direct peptide reactivity assay; human cell line activation test; and KeratinoSens™ assay. Models were built to predict three potency categories using four machine learning approaches and were validated using external test sets and leave-one-out cross-validation. A one-tiered strategy modeled all three categories of response together while a two-tiered strategy modeled sensitizer/non-sensitizer responses and then classified the sensitizers as strong or weak sensitizers. The two-tiered model using the support vector machine with all assay and physicochemical data inputs provided the best performance, yielding accuracy of 88% for prediction of LLNA outcomes (120 substances) and 81% for prediction of human test outcomes (87 substances). The best one-tiered model predicted LLNA outcomes with 78% accuracy and human outcomes with 75% accuracy. By comparison, the LLNA predicts human potency categories with 69% accuracy (60 of 87 substances correctly categorized). These results suggest that computational models using non-animal methods may provide valuable information for assessing skin sensitization potency. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Alternativas aos Testes com Animais/métodos , Bioensaio/métodos , Dermatite Alérgica de Contato/etiologia , Dermatite Alérgica de Contato/imunologia , Substâncias Perigosas/toxicidade , Aprendizado de Máquina , Pele/efeitos dos fármacos , Humanos , Modelos Estatísticos , Estados Unidos
16.
J Appl Toxicol ; 37(3): 347-360, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27480324

RESUMO

One of the Interagency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens™ assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy 88%), any of the alternative methods alone (accuracy 63-79%) or test batteries combining data from the individual methods (accuracy 75%). These results suggest that computational methods are promising tools to identify effectively the potential human skin sensitizers without animal testing. Published 2016. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Dermatite Alérgica de Contato/etiologia , Substâncias Perigosas/toxicidade , Modelos Biológicos , Pele/efeitos dos fármacos , Alternativas ao Uso de Animais , Bioensaio , Bases de Dados Factuais , Dermatite Alérgica de Contato/imunologia , Humanos , Modelos Logísticos , Aprendizado de Máquina , Análise Multivariada , Valor Preditivo dos Testes
17.
Curr Opin Clin Nutr Metab Care ; 19(2): 125-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26808266

RESUMO

PURPOSE OF REVIEW: Low muscularity and skeletal muscle atrophy are commonly exhibited in critically ill patients and have major implications on patient outcomes. Typically, in the ICU, body composition is assessed through anthropometrics or bioelectrical impedance analysis, but these modalities cannot specifically quantify skeletal muscle; thus, we evaluate the merits and challenges of using computed tomography (CT) and ultrasonography to specifically measure skeletal muscle in the ICU. RECENT FINDINGS: CT-based cut points have been used to identify critically ill patients with low muscle mass, and low muscularity associates with poor clinical outcomes and function. Ultrasonography is emerging as a useful tool to quantify skeletal muscle loss and degradation in architecture, as well as prospectively track changes in these parameters over time. Rates of muscle atrophy and changes in muscle architecture has been quantified by ultrasonography and associated with poor clinical outcomes, but identification of critically ill patients with low muscularity is still in its infancy. SUMMARY: CT imaging and ultrasonography require additional comprehensive validations against accurate measures of whole body muscle mass. As these validations begin to emerge, there will be a need to translate this knowledge into a simple tool that clinicians can apply as part of routine care.


Assuntos
Estado Terminal , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiopatologia , Tomografia Computadorizada por Raios X , Composição Corporal , Humanos , Unidades de Terapia Intensiva , Atrofia Muscular/prevenção & controle , Reprodutibilidade dos Testes
18.
J Appl Toxicol ; 36(9): 1150-62, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26851134

RESUMO

One of the top priorities of the Interagency Coordinating Committee for the Validation of Alternative Methods (ICCVAM) is the identification and evaluation of non-animal alternatives for skin sensitization testing. Although skin sensitization is a complex process, the key biological events of the process have been well characterized in an adverse outcome pathway (AOP) proposed by the Organisation for Economic Co-operation and Development (OECD). Accordingly, ICCVAM is working to develop integrated decision strategies based on the AOP using in vitro, in chemico and in silico information. Data were compiled for 120 substances tested in the murine local lymph node assay (LLNA), direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens assay. Data for six physicochemical properties, which may affect skin penetration, were also collected, and skin sensitization read-across predictions were performed using OECD QSAR Toolbox. All data were combined into a variety of potential integrated decision strategies to predict LLNA outcomes using a training set of 94 substances and an external test set of 26 substances. Fifty-four models were built using multiple combinations of machine learning approaches and predictor variables. The seven models with the highest accuracy (89-96% for the test set and 96-99% for the training set) for predicting LLNA outcomes used a support vector machine (SVM) approach with different combinations of predictor variables. The performance statistics of the SVM models were higher than any of the non-animal tests alone and higher than simple test battery approaches using these methods. These data suggest that computational approaches are promising tools to effectively integrate data sources to identify potential skin sensitizers without animal testing. Published 2016. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Alérgenos/toxicidade , Pele/efeitos dos fármacos , Xenobióticos/toxicidade , Alternativas aos Testes com Animais/métodos , Animais , Linhagem Celular , Biologia Computacional , Tomada de Decisões , Dermatite Alérgica de Contato/patologia , Humanos , Ensaio Local de Linfonodo , Camundongos , Reprodutibilidade dos Testes , Medição de Risco
19.
Phys Chem Chem Phys ; 17(23): 15088-92, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25990030

RESUMO

Bulk compounds, prepared via the ceramic route, related to Cu2ZnSnSe4 (CZTSe), a material considered for use in photovoltaic devices, were investigated using NMR spectroscopy, electron-probe microanalyses and X-ray diffraction. These materials adopt the kesterite structure regardless of the Cu and Zn contents. It is also shown that the stability domain of the copper-poor quaternary phases is wider for selenide derivatives than for sulphides. Finally, the Cu/Zn disorder level in CZTSe is found to be higher when the samples are quenched, which is reminiscent of the behaviour of the parent sulphide compounds CZTS.

20.
Inorg Chem ; 53(16): 8646-53, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25069473

RESUMO

The material Cu2ZnSn(S,Se)4 (CZTS) offers a promising indium-free alternative to Cu(In,Ga)Se2 for the absorber layer in thin-film solar cells. It is known that the highest solar energy conversion efficiencies are reached for Cu-poor, Zn-rich CZTS compositions and that too much disorder at the Cu and Zn sites can have a negative impact on the device performance. In this article, we investigate the structures of [VCu + ZnCu] A-type and [2ZnCu + ZnSn] B-type defect complexes and their impact on the long-range Cu/Zn disorder. To that end, we use (119)Sn, (65)Cu, and (67)Zn solid-state NMR and Raman spectroscopy to characterize powdered CZTS samples. For both A- and B-type substitutions, our NMR investigations demonstrate the clustering of the complexes. Moreover, we show that (A+B)-type compounds should be considered as A-type and B-type compounds, since no interaction seems to exist between [VCu + ZnCu] and [2ZnCu + ZnSn] defect complexes. In addition, it is worth noting that [2ZnCu + ZnSn] complexes have only a minor impact on the level of disorder at the Cu and Zn sites. In contrast, [VCu + ZnCu] complexes seem to restrain the random distribution of Cu at the Zn site and of Zn at the Cu site; i.e., the long-range Cu/Zn disorder. Raman characterization of the CZTS samples was also conducted. The Q = I287/I303 and the newly introduced Q' = I338/(I366 + I374) ratios determined from Raman spectra collected at 785 nm turn out to be very sensitive to the level of Cu/Zn disorder. Moreover, they can be used to differentiate the nature of the substitution in slow-cooled materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA