Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 91(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381571

RESUMO

A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which activates a host dependency factor, cofilin, and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIM domain kinase 1 (LIMK1) with short hairpin RNA (shRNA) inhibits HIV infection, no specific small-molecule inhibitor of LIMK has been available. Here, we describe the design and discovery of novel classes of small-molecule inhibitors of LIMK for inhibiting HIV infection. We identified R10015 as a lead compound that blocks LIMK activity by binding to the ATP-binding pocket. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses, including Zaire ebolavirus (EBOV), Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus (VEEV), and herpes simplex virus 1 (HSV-1), suggesting that LIMK inhibitors could be developed as a new class of broad-spectrum antiviral drugs.IMPORTANCE The actin cytoskeleton is a structure that gives the cell shape and the ability to migrate. Viruses frequently rely on actin dynamics for entry and intracellular migration. In cells, actin dynamics are regulated by kinases, such as the LIM domain kinase (LIMK), which regulates actin activity through phosphorylation of cofilin, an actin-depolymerizing factor. Recent studies have found that LIMK/cofilin are targeted by viruses such as HIV-1 for propelling viral intracellular migration. Although inhibiting LIMK1 expression blocks HIV-1 infection, no highly specific LIMK inhibitor is available. This study describes the design, medicinal synthesis, and discovery of small-molecule LIMK inhibitors for blocking HIV-1 and several other viruses and emphasizes the feasibility of developing LIMK inhibitors as broad-spectrum antiviral drugs.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , HIV-1/efeitos dos fármacos , Quinases Lim/antagonistas & inibidores , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/síntese química , Antivirais/isolamento & purificação , Células Cultivadas , Ebolavirus/efeitos dos fármacos , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/isolamento & purificação , HIV-1/fisiologia , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Vírus da Febre do Vale do Rift/efeitos dos fármacos
2.
Proteins ; 49(1): 49-60, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12211015

RESUMO

Erythrocytes of the marine annelid, Glycera dibranchiata, contain a mixture of monomeric and polymeric hemoglobins. There are three major monomer hemoglobin components, II, III, IV (also called GMH2, 3, and 4), that have been highly purified and well characterized. We have now crystallized GMH3 and GMH4 and determined their structures to 1.4-1.8 A resolution. The structures were determined for these two monomer hemoglobins in the oxidized (Fe3+, ferric, or met-) forms in both the unligated and cyanide-ligated states. This work differs from two published, refined structures of a Glycera dibranchiata monomer hemoglobin, which has a sequence that is substantially different from any bona fide major monomer hemoglobins (GMH2, 3, or 4). The high-resolution crystal structures (presented here) and the previous NMR structure of CO-ligated GMH4, provide a basis for interpreting structure/function details of the monomer hemoglobins. These details include: (1) the strong correlation between temperature factor and NMR dynamics for respective protein forms; (2) the unique nature of the HisE7Leu primary sequence substitutions in GMH3 and GMH4 and their impact on cyanide ion binding kinetics; (3) the LeuB10Phe difference between GMH3 and GMH4 and its impact on ligand binding; and (4) elucidation of changes in the structural details of the distal and proximal heme pockets upon cyanide binding.


Assuntos
Hemoglobinas/química , Metemoglobina/análogos & derivados , Metemoglobina/química , Modelos Moleculares , Poliquetos , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Cianetos/química , Cianetos/metabolismo , Cianetos/farmacologia , Heme/química , Hemoglobinas/metabolismo , Histidina/química , Cinética , Ligantes , Metemoglobina/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Homologia de Sequência de Aminoácidos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA