RESUMO
Although we recently demonstrated that static magnetic fields (SMFs) of 3, 15, and 50 mT stimulate osteoblastic differentiation, the effects of SMFs on osteoclastogenesis are still poorly understood. This study focused on the suppressive effects of SMFs on receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis and bone resorption. Direct SMFs inhibit RANKL-induced multinucleated osteoclast formation, tartrate-resistant acid phosphatase activity, and bone resorption in mouse bone marrow-derived macrophage cells. The conditioned medium from osteoblasts treated with SMFs also resulted in the inhibition of osteoclast differentiation as well as resorption. The RANKL-induced expression of osteoclast-specific transcription factors, such as c-Fos and NFATc1, was remarkably downregulated by SMF at 15 mT. In addition, SMF inhibited RANKL-activated Akt, glycogen synthase kinase 3ß (GSK3ß), extracellular signal-regulated kinase, c-jun N-terminal protein kinase, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) formation. These findings indicate that SMF-mediated attenuation of RANKL-induced Akt, GSK3ß, MAPK, and NF-κB pathways could contribute to the direct and indirect inhibition of osteoclast formation and bone resorption. Therefore, SMFs could be developed as a therapeutic agent against periprosthetic or peri-implant osteolysis. Additionally, these could be used against osteolytic diseases such as osteoporosis and rheumatoid arthritis. Bioelectromagnetics. 39:394-404, 2018. © 2018 Wiley Periodicals, Inc.
Assuntos
Células da Medula Óssea/fisiologia , Diferenciação Celular/fisiologia , Campos Magnéticos , Osteoclastos/fisiologia , Animais , Células da Medula Óssea/citologia , Reabsorção Óssea/patologia , Reabsorção Óssea/fisiopatologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/metabolismo , Transdução de SinaisRESUMO
OBJECTIVES: Although bisphosphonates (BPs) are known to be associated with osteonecrosis of the maxilla, the precise effects of BPs on bone metabolism in human maxillary sinus mucosal cells (HMSMCs) are not yet known. The purposes of this study were to examine the effects of the BPs zoledronate (ZOL) and alendronate (ALN) on osteoblastic and osteoclastic differentiation in HMSMCs and to investigate the signaling pathways involved. MATERIALS AND METHODS: The effects of ZOL and ALN were assessed for osteoblast differentiation by alkaline phosphatase (ALP) activity, alizarin red staining, and RT-PCR for genes encoding Runx2 and osterix. Receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow macrophages (BMMs) was also examined. RESULTS: ZOL and ALN both suppressed osteoblastic differentiation, as evidenced by their effects on ALP activity, mineralization nodule formation, and the mRNA expression levels of osteoblastic transcript factors. The RANKL/osteoprotegerin ratio in HMSMCs was increased by ALN, whereas ZOL had the opposite effect. Conditioned medium obtained from ALN-treated HMSMCs stimulated osteoclast formation and upregulated NFATc1 expression, whereas conditioned medium from ZOL-treated cells did not. ALN was more cytotoxic and stimulated apoptosis more strongly than ZOL. BPs decreased the protein levels of the non-canonical Wnt signaling protein Wnt5a and calmodulin-dependent kinase II. Moreover, recombinant human Wnt5a reversed the effects of BPs on osteoblastic and osteoclastic differentiation. CONCLUSION: This study is the first demonstration that BPs exert negative effects on osteoblastic and osteoclastic processes via the non-canonical Wnt pathway in HMSMSCs. CLINICAL RELEVANCE: It suggests that patients taking BPs during the period of maxillary sinus lifting and amentation should be given special attention.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Difosfonatos/farmacologia , Seio Maxilar/citologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Células-Tronco/metabolismo , Adulto , Alendronato/farmacologia , Fosfatase Alcalina/metabolismo , Western Blotting , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Humanos , Masculino , Ligante RANK/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição Sp7/metabolismo , Ácido Zoledrônico/farmacologiaRESUMO
Osteoarthritis (OA) is a chronic degenerative joint disease accompanied by an inflammatory milieu that results in painful joints. The pathogenesis of OA is multifactorial, with genetic predisposition, environmental factors, and traumatic injury resulting in the direct or indirect loss of cartilage. The articular cartilage can also be damaged by direct focal traumatic injury. Articular cartilage provides a smooth, deformable bearing surface with a low coefficient of friction, increased contact area, and reduced contact stress. Articular type II hyaline cartilage lines the synovial joints and, when injured, has a limited ability for repair, except for the most superficial layers via diffusion from the synovial fluid, secondary to no blood supply, a complex structure, and a low metabolic rate. Restoring the articular surface can relieve pain and restore function. Although many strategies have been developed to regenerate type II collagen based on the extent of the lesion, surgical treatments are still evolving. The peroxisome proliferator-activated receptor delta (PPARδ) agonist and collagen treatment of mesenchymal stem cells (MSCs) enhance the chondrogenic capacity in vitro. We present a novel technique for cartilage restoration in a rabbit cartilage osteochondral defect model using a PPARδ agonist (GW0742)-infused 3D collagen scaffold to induce type II cartilage from MSCs.
Assuntos
Cartilagem Articular , Osteoartrite , PPAR delta , Animais , Cartilagem Articular/metabolismo , Condrogênese , Colágeno/metabolismo , Colágeno Tipo II/metabolismo , Osteoartrite/metabolismo , PPAR delta/metabolismo , CoelhosRESUMO
PURPOSE: Although static magnetic fields (SMFs) have been used in dental prostheses and osseointegrated implants, their biological effects on osteoblastic and cementoblastic differentiation in cells involved in periodontal regeneration remain unknown. This study was undertaken to investigate the effects of SMFs (15 mT) on the osteoblastic and cementoblastic differentiation of human osteoblasts, periodontal ligament cells (PDLCs), and cementoblasts, and to explore the possible mechanisms underlying these effects. METHODS: Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, mineralized nodule formation based on Alizarin red staining, calcium content, and the expression of marker mRNAs assessed by reverse transcription polymerase chain reaction (RT-PCR). Signaling pathways were analyzed by western blotting and immunocytochemistry. RESULTS: The activities of the early marker ALP and the late markers matrix mineralization and calcium content, as well as osteoblast- and cementoblast-specific gene expression in osteoblasts, PDLCs, and cementoblasts were enhanced. SMFs upregulated the expression of Wnt proteins, and increased the phosphorylation of glycogen synthase kinase-3ß (GSK-3ß) and total ß-catenin protein expression. Furthermore, p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways were activated. CONCLUSIONS: SMF treatment enhanced osteoblastic and/or cementoblastic differentiation in osteoblasts, cementoblasts, and PDLCs. These findings provide a molecular basis for the beneficial osteogenic and/or cementogenic effect of SMFs, which could have potential in stimulating bone or cementum formation during bone regeneration and in patients with periodontal disease.