Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 123(12): 1737-1748, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32958825

RESUMO

BACKGROUND: Peroxisome proliferator-activated receptor γ (PPARγ) agonists frequently induce cell death in human non-small-cell lung cancer (NSCLC) cells. However, majority of NSCLC patients acquire resistance after cancer therapy, and it is still unclear. METHODS: In this study we investigated the apoptotic mechanism and the anti-cancer effects of a novel purine-based PPARγ agonist, CB11 (8-(2-aminophenyl)-3-butyl-1,6,7-trimethyl-1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione), on human NSCLC cells. CB11 mediates PPARγ-dependent cell death, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) collapse, cell cycle arrest, lactate dehydrogenase (LDH) cytotoxicity, and caspase-3 activity in human NSCLC cells. RESULTS: CB11 causes cell death via ROS-mediated ATM-p53-GADD45α signalling in human NSCLC cells, and diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, decreases cell death by inhibiting CB11-mediated ATM signalling. In a xenograft experiment, CB11 dramatically reduced tumour volume when compared to a control group. Furthermore, CB11 induced cell death by inhibiting epithelial-to-mesenchymal transition (EMT) under radiation exposure in radiation-resistant human NSCLC cells. However, PPARγ deficiency inhibited cell death by blocking the ATM-p53 axis in radiation/CB11-induced radiation-resistant human NSCLC cells. CONCLUSIONS: Taken together, our results suggest that CB11, a novel PPARγ agonist, may be a novel anti-cancer agent, and it could be useful in a therapeutic strategy to overcome radio-resistance in radiation-exposed NSCLC.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Imidazóis/uso terapêutico , Neoplasias Pulmonares/radioterapia , PPAR gama/agonistas , Purinas/uso terapêutico , Tolerância a Radiação/efeitos dos fármacos , Células 3T3 , Adipócitos/citologia , Anilidas/farmacologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Compostos Azo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Diferenciação Celular , Linhagem Celular Tumoral , Dano ao DNA , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos da radiação , Feminino , Humanos , L-Lactato Desidrogenase , Ligantes , Luciferases/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oniocompostos/farmacologia , PPAR gama/deficiência , PPAR gama/metabolismo , RNA Interferente Pequeno , Tolerância a Radiação/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Tiazolidinedionas/farmacologia , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
2.
Genomics Inform ; 11(4): 245-53, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24465237

RESUMO

A radioresistant cell line was established by fractionated ionizing radiation (IR) and assessed by a clonogenic assay, flow cytometry, and Western blot analysis, as well as zymography and a wound healing assay. Microarray was performed to profile global expression and to search for differentially expressed genes (DEGs) in response to IR. H460R cells demonstrated increased cell scattering and acidic vesicular organelles compared with parental cells. Concomitantly, H460R cells showed characteristics of increased migration and matrix metalloproteinase activity. In addition, H460R cells were resistant to IR, exhibiting reduced expression levels of ionizing responsive proteins (p-p53 and γ-H2AX); apoptosis-related molecules, such as cleaved poly(ADP ribose) polymerase; and endoplasmic reticulum stress-related molecules, such as glucose-regulated protein (GRP78) and C/EBP-homologous protein compared with parental cells, whereas the expression of anti-apoptotic X-linked inhibitor of apoptosis protein was increased. Among DEGs, syntrophin beta 2 (SNTB2) significantly increased in H460R cells in response to IR. Knockdown of SNTB2 by siRNA was more sensitive than the control after IR exposure in H460, H460R, and H1299 cells. Our study suggests that H460R cells have differential properties, including cell morphology, potential for metastasis, and resistance to IR, compared with parental cells. In addition, SNTB2 may play an important role in radioresistance. H460R cells could be helpful in in vitro systems for elucidating the molecular mechanisms of and discovering drugs to overcome radioresistance in lung cancer therapy.

3.
Prev Nutr Food Sci ; 17(3): 217-22, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24471087

RESUMO

This study was carried out to investigate the isolation and characterization of lactic acid bacteria (LAB) from naturally fermented sauce-type kimchi. Sauce-type kimchi was prepared with fresh, chopped ingredients (Korean cabbage, radish, garlic, ginger, green onion, and red pepper). The two isolated bacteria from sauce-type kimchi were identified as Pediococcus pentosaceus and Lactobacillus brevis by 16S rDNA sequencing and tentatively named Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2, respectively. Pediococcus sp. IJ-K1 was isolated from the early and middle fermentation stages of sauce-type kimchi whereas Lactobacillus sp. IJ-K2 was isolated from the late fermentation stage. The resistance of Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2 to artificial gastric and bile acids led to bacterial survival rates that were 100% and 84.21%, respectively.

4.
Appl Biochem Biotechnol ; 165(1): 235-42, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21544555

RESUMO

This study was conducted to investigate the antibacterial effect of BSAP-254 on Bacillus cereus with the induced stress proteins. The BSAP-254 is an antimicrobial peptide isolated from soybean-fermenting bacteria, Bacillus subtilis SC-8. It had a narrow spectrum of activity against B. cereus group. The growth inhibitory effect of BSAP-254 (50 µg/mL) reduced the population of B. cereus from >10(8) to 10(4) colony-forming units per milliliter within 30 min. In B. cereus exposed to BSAP-254, 14 intracellular proteins were differentially expressed as determined by 2-DE coupled with MS. Of the differentially expressed proteins identified, the stress protein GroEL, which is heat shock protein, was induced in B. cereus exposed to antibacterial peptide.


Assuntos
Antibacterianos/farmacologia , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/metabolismo , Bacillus subtilis/química , Proteínas de Bactérias/biossíntese , Chaperonina 60/biossíntese , Antibacterianos/química , Bacillus cereus/efeitos dos fármacos
5.
J Biosci Bioeng ; 110(3): 298-303, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20547349

RESUMO

In this study, an effective substance was isolated from Bacillus subtilis SC-8, which was obtained from traditionally fermented soybean paste, cheonggukjang. The substance was purified by HPLC, and its properties were analyzed. It had an adequate antagonistic effect on Bacilluscereus, and its spectrum of activity was narrow. When tested on several gram-negative and gram-positive foodborne pathogenic bacteria such as Salmonella enterica, Salmonella enteritidis, Staphylococcus aureus, and Listeria monocytogenes, no antagonistic effect was observed. Applying the derivative from B. subtilis SC-8 within the same genus did not inhibit the growth of major soybean-fermenting bacteria such as Bacillus subtilis, Bacillus licheniformis, and Bacillus amyloquefaciens. The range of pH stability of the purified antagonistic substance was wide (from 4.0 to >10.0), and the substance was thermally stable up to 60 degrees C. In the various enzyme treatments, the antagonistic activity of the purified substance was reduced with proteinase K, protease, and lipase; its activity was partially destroyed with esterase. Spores of B. cereus did not grow at all in the presence of 5mug/mL of the purified antagonistic substance. The isolated antagonistic substance was thought to be an antibiotic-like lipopeptidal compound and was tentatively named BSAP-254 because it absorbed to UV radiation at 254nm.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bacillus cereus/química , Bacillus cereus/efeitos dos fármacos , Bacillus subtilis/classificação , Bacillus subtilis/metabolismo , Glycine max/microbiologia , Antibacterianos/isolamento & purificação , Apoptose/efeitos dos fármacos , Bacillus cereus/citologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA