Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Biol Chem ; 298(11): 102519, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152752

RESUMO

Plants and algae are faced with a conundrum: harvesting sufficient light to drive their metabolic needs while dissipating light in excess to prevent photodamage, a process known as nonphotochemical quenching. A slowly relaxing form of energy dissipation, termed qH, is critical for plants' survival under abiotic stress; however, qH location in the photosynthetic membrane is unresolved. Here, we tested whether we could isolate subcomplexes from plants in which qH was induced that would remain in an energy-dissipative state. Interestingly, we found that chlorophyll (Chl) fluorescence lifetimes were decreased by qH in isolated major trimeric antenna complexes, indicating that they serve as a site for qH-energy dissipation and providing a natively quenched complex with physiological relevance to natural conditions. Next, we monitored the changes in thylakoid pigment, protein, and lipid contents of antenna with active or inactive qH but did not detect any evident differences. Finally, we investigated whether specific subunits of the major antenna complexes were required for qH but found that qH was insensitive to trimer composition. Because we previously observed that qH can occur in the absence of specific xanthophylls, and no evident changes in pigments, proteins, or lipids were detected, we tentatively propose that the energy-dissipative state reported here may stem from Chl-Chl excitonic interaction.


Assuntos
Clorofila , Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Plantas , Clorofila/química , Luz , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Complexo de Proteína do Fotossistema II/química , Plantas/química , Tilacoides/química , Xantofilas/química
2.
Environ Res ; 204(Pt B): 112036, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34529972

RESUMO

A practical scale photocatalytic air purifier equipped with a TiO2/H-ZSM-5 composite bead filter was demonstrated to be able to effectively remove indoor volatile organic compounds (VOCs) and viruses with sustainable performances under UVA-LED illumination. TiO2 hybridized with 5 wt% H-ZSM-5 zeolite significantly enhanced its photocatalytic activity for degrading VOCs including formaldehyde, acetaldehyde, and toluene, than bare TiO2. H-ZSM-5 provided strong adsorption sites for these compounds, thus accelerating their photocatalytic conversion into CO2 by adjacent TiO2 photocatalyst. Moreover, owing to its superior adsorption capacity, the composite bead filter completely prevented the emission of formaldehyde produced by photocatalytic oxidation of toluene. The sustainability of this composite bead filter for VOC removal was confirmed by regeneration and accelerated durability tests. In addition, the photocatalytic air purifier was effective in removing aerosolized viral particles of bacteriophage Phi-X 174. It was confirmed that the viruses on filter surfaces were completely inactivated by photocatalytic oxidation. TiO2/H-ZSM-5 composite beads also exhibited excellent efficacies for inactivation of pathogenic coronaviruses including SARS-CoV-2. The photocatalytic process degraded viral RNAs of SARS-CoV-2 by more than 99.999% in 1 h, eliminating the viral infectivity. Results of this study suggest that the air purifier equipped with the composite bead filter is ready for practical applications for home and hospital uses.


Assuntos
Filtros de Ar , COVID-19 , Compostos Orgânicos Voláteis , Zeolitas , Catálise , Humanos , SARS-CoV-2 , Titânio , Inativação de Vírus
3.
Proc Natl Acad Sci U S A ; 116(9): 3385-3390, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808735

RESUMO

Nonphotochemical quenching (NPQ) is a proxy for photoprotective thermal dissipation processes that regulate photosynthetic light harvesting. The identification of NPQ mechanisms and their molecular or physiological triggering factors under in vivo conditions is a matter of controversy. Here, to investigate chlorophyll (Chl)-zeaxanthin (Zea) excitation energy transfer (EET) and charge transfer (CT) as possible NPQ mechanisms, we performed transient absorption (TA) spectroscopy on live cells of the microalga Nannochloropsis oceanica We obtained evidence for the operation of both EET and CT quenching by observing spectral features associated with the Zea S1 and Zea●+ excited-state absorption (ESA) signals, respectively, after Chl excitation. Knockout mutants for genes encoding either violaxanthin de-epoxidase or LHCX1 proteins exhibited strongly inhibited NPQ capabilities and lacked detectable Zea S1 and Zea●+ ESA signals in vivo, which strongly suggests that the accumulation of Zea and active LHCX1 is essential for both EET and CT quenching in N. oceanica.


Assuntos
Transferência de Energia/genética , Microalgas/metabolismo , Fotossíntese/genética , Zeaxantinas/química , Carotenoides/genética , Carotenoides/metabolismo , Clorofila/química , Clorofila/genética , Clorofila/metabolismo , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Microalgas/química , Microalgas/genética , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Xantofilas/química , Xantofilas/genética , Xantofilas/metabolismo , Zeaxantinas/genética , Zeaxantinas/metabolismo
4.
Korean J Chem Eng ; 39(6): 1632-1640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35125591

RESUMO

Ag-doped ZnO nanoparticles (AZNs) were directly synthesized using sol-gel method to embed into polyacrylonitrile (PAN) nanofibers by electrospinning. The synthesized AZNs were optically and structurally characterized by UV-VIS spectroscopy, photoluminescence spectroscopy, high resolution HR-TEM and XRD. The photocatalytic activity of the AZNs was examined by photocatalytic degradation of methylene blue to correlate with their antiviral efficacy in PAN nanofibers fabricated via electrospinning technique. The PAN nanofibers containing AZNs were characterized using SEM and EDS. Finally, antiviral activity of AZNs/PAN nanofibers was investigated by using virus ϕx174 under visible light irradiation. As a result, the antiviral efficacy of nanofibers increased as the concentration of Ag in AZNs increased. The results show that better antiviral efficacy was obtained in AZNs/PAN nanofibers prepared with AZNs of higher photocatalytic performance.

5.
Xenotransplantation ; 28(3): e12667, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33438288

RESUMO

BACKGROUND: Necrostatin-1 (Nec-1) supplementation to tissue culture media on day 3 has recently been shown to augment the insulin content, endocrine cellular composition, and insulin release of pre-weaned porcine islets (PPIs); however, its effects were only examined for the first 7 days of tissue culture. The present study examined whether the addition of Nec-1 on day 3 could further enhance the in vitro development and function of PPIs after 14 days of tissue culture. METHODS: PPIs were isolated from 8- to 15-day-old, pre-weaned Yorkshire piglets and cultured in an islet maturation media supplemented with Nec-1 on day 3. The recovery, viability, insulin content, endocrine cellular composition, GLUT2 expression in beta cells, differentiation and proliferation potential, and glucose-stimulated insulin secretion of PPIs were assessed on days 3, 7, and 14 of tissue culture (n = 5 on each day). RESULTS: Compared with day 7 of tissue culture, islets on day 14 had a lower recovery, GLUT2 expression in beta cells, proliferation capacity of endocrine cells, and glucose-induced insulin stimulation index. Prolonging the culture time to 14 days did not affect islet viability, insulin content, proportion of endocrine cells, and differentiation potential. CONCLUSION: The growth-inducing effects of Nec-1 on PPIs were most effective on day 7 of tissue culture when added on day 3. Our findings support existing evidence that the in vitro activities of Nec-1 are short-lived and encourage future studies to explore the use of other novel growth factors during prolonged islet tissue culture.


Assuntos
Ilhotas Pancreáticas , Animais , Imidazóis , Indóis , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Suínos , Transplante Heterólogo
6.
Proc Natl Acad Sci U S A ; 114(32): E6710-E6719, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739919

RESUMO

LEAFY COTYLEDON1 (LEC1), an atypical subunit of the nuclear transcription factor Y (NF-Y) CCAAT-binding transcription factor, is a central regulator that controls many aspects of seed development including the maturation phase during which seeds accumulate storage macromolecules and embryos acquire the ability to withstand desiccation. To define the gene networks and developmental processes controlled by LEC1, genes regulated directly by and downstream of LEC1 were identified. We compared the mRNA profiles of wild-type and lec1-null mutant seeds at several stages of development to define genes that are down-regulated or up-regulated by the lec1 mutation. We used ChIP and differential gene-expression analyses in Arabidopsis seedlings overexpressing LEC1 and in developing Arabidopsis and soybean seeds to identify globally the target genes that are transcriptionally regulated by LEC1 in planta Collectively, our results show that LEC1 controls distinct gene sets at different developmental stages, including those that mediate the temporal transition between photosynthesis and chloroplast biogenesis early in seed development and seed maturation late in development. Analyses of enriched DNA sequence motifs that may act as cis-regulatory elements in the promoters of LEC1 target genes suggest that LEC1 may interact with other transcription factors to regulate distinct gene sets at different stages of seed development. Moreover, our results demonstrate strong conservation in the developmental processes and gene networks regulated by LEC1 in two dicotyledonous plants that diverged ∼92 Mya.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Glycine max/metabolismo , Sementes/metabolismo , Transcrição Gênica/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Motivos de Nucleotídeos/fisiologia , Sementes/genética , Glycine max/genética
7.
Photosynth Res ; 141(3): 367-376, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31020482

RESUMO

Although the importance of nonphotochemical quenching (NPQ) on photosynthetic biomass production and crop yields is well established, the in vivo operation of the individual mechanisms contributing to overall NPQ is still a matter of controversy. In order to investigate the timescale and activation dynamics of specific quenching mechanisms, we have developed a technique called snapshot transient absorption (TA) spectroscopy, which can monitor molecular species involved in the quenching response with a time resolution of 30 s. Using intact thylakoid membrane samples, we show how conventional TA kinetic and spectral analyses enable the determination of the appropriate wavelength and time delay for snapshot TA experiments. As an example, we show how the chlorophyll-carotenoid charge transfer and excitation energy transfer mechanisms can be monitored based on signals corresponding to the carotenoid (Car) radical cation and Car S1 excited state absorption, respectively. The use of snapshot TA spectroscopy together with the previously reported fluorescence lifetime snapshot technique (Sylak-Glassman et al. in Photosynth Res 127:69-76, 2016) provides valuable information such as the concurrent appearance of specific quenching species and overall quenching of excited Chl. Furthermore, we show that the snapshot TA technique can be successfully applied to completely intact photosynthetic organisms such as live cells of Nannochloropsis. This demonstrates that the snapshot TA technique is a valuable method for tracking the dynamics of intact samples that evolve over time, such as the photosynthetic system in response to high-light exposure.


Assuntos
Processos Fotoquímicos , Análise Espectral , Difusão , Cinética , Spinacia oleracea/metabolismo , Termodinâmica , Tilacoides/metabolismo
8.
J Am Chem Soc ; 140(38): 11965-11973, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30183270

RESUMO

Nonphotochemical quenching (NPQ) provides an essential photoprotection in plants, assuring safe dissipation of excess energy as heat under high light. Although excitation energy transfer (EET) between chlorophyll (Chl) and carotenoid (Car) molecules plays an important role in NPQ, detailed information on the EET quenching mechanism under in vivo conditions, including the triggering mechanism and activation dynamics, is very limited. Here, we observed EET between the Chl Q y state and the Car S1 state in high-light-exposed spinach thylakoid membranes. The kinetic and spectral analyses using transient absorption (TA) spectroscopy revealed that the Car S1 excited state absorption (ESA) signal after Chl excitation has a maximum absorption peak around 540 nm and a lifetime of ∼8 ps. Snapshot TA spectroscopy at multiple time delays allowed us to track the Car S1 ESA signal as the thylakoid membranes were exposed to various light conditions. The obtained snapshots indicate that maximum Car S1 ESA signal quickly rose and slightly dropped during the initial high-light exposure (<3 min) and then gradually increased with a time constant of ∼5 min after prolonged light exposure. This suggests the involvement of both rapidly activated and slowly activated mechanisms for EET quenching. 1,4-Dithiothreitol (DTT) and 3,3'-dithiobis(sulfosuccinimidyl propionate) (DTSSP) chemical treatments further support that the Car S1 ESA signal (or the EET quenching mechanism) is primarily dependent on the accumulation of zeaxanthin and partially dependent on the reorganization of membrane proteins, perhaps due to the pH-sensing protein photosystem II subunit S.

9.
Small ; 13(9)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28005305

RESUMO

The triggering effect of silver nanoparticles (NPs) on the induction of allergic reactions is evaluated, by studying the activation of mast cells and the clinical features of atopic dermatitis in a mouse model. Granule release is induced in RBL-2H3 mast cells by 5 nm, but not 100 nm silver NPs. Increases in the levels of reactive oxygen species (hydrogen peroxide and mitochondrial superoxide) and intracellular Ca++ in mast cells are induced by 5 nm silver NPs. In a mouse model of atopic dermatitis induced by a mite allergen, the skin lesions are more severe and appear earlier in mice treated simultaneously with 5 nm silver NPs and allergen compared with mice treated with allergen alone or 100 nm silver NPs and allergen. The histological findings reveal that number of tryptase-positive mast cells and total IgE levels in the serum increase in mice treated with 5 nm silver NPs and allergen. The results in this study indicate that cotreatment with 5 nm silver NPs stimulates mast cell degranulation and induces earlier and more severe clinical alterations in allergy-prone individuals.


Assuntos
Dermatite Atópica/patologia , Mastócitos/patologia , Nanopartículas Metálicas/química , Tamanho da Partícula , Prata/química , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Dermatite Atópica/sangue , Imunoglobulina E/sangue , Mastócitos/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Prata/farmacologia , Pele/efeitos dos fármacos , Pele/patologia , Superóxidos/metabolismo
10.
Phys Chem Chem Phys ; 19(20): 13140-13146, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28489084

RESUMO

Real-time analysis of changes in the atomic environment of materials is a cutting edge technology that is being used to explain reaction dynamics in many fields of science. Previously, this kind of analysis was only possible using heavy nucleonic equipment such as XANES and EXAFS, or Raman spectroscopy on a moderate scale. Here, a new methodology is described that can be used to track changes in crystalline developments during complex Li insertion reactions via the observation of structural color. To be specific, the changes in atomic crystalline and nanostructure are shown during Li insertion in a complex TiO2 polymorph. Structural color corresponds to the refractive indices of materials originating from their atomic bonding nature and precise wave interferences in accordance with their nanostructure. Therefore, this new analysis simultaneously reveals changes in the nanostructure as well as changes in the atomic bonding nature of materials.

11.
Phys Chem Chem Phys ; 19(37): 25796, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28914296

RESUMO

Correction for 'Observation of crystalline changes of titanium dioxide during lithium insertion by visible spectrum analysis' by Inho Nam et al., Phys. Chem. Chem. Phys., 2017, 19, 13140-13146.

12.
J Nanosci Nanotechnol ; 17(1): 588-93, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29630297

RESUMO

A sponge-like Li(4)Ti(5)O(12)/graphene composite was prepared via sequential hydrothermal process and solid-state heat treatment process for the application to high-power lithium ion batteries. The as-prepared electrode showed outstanding Li electroactivities with a rapid and reversible Li insertion/ extraction of up to 10 C-rate (1.75 A/g). It delivered a discharge capacity of 174 mAh/g at 0.5 C, near the theoretical capacity of Li(4)Ti(5)O(12), with good rate capability and cyclic stability. First-principles calculations revealed the intimate interaction of the Li(4)Ti(5)O(12) and graphene, which implies that graphene functions as an 'electron tunnel.' Electrochemical impedance spectroscopy also proved that the graphene-hybridization and the unique structure of the Li(4)Ti(5)O(12) material significantly reduce the resistive behavior of electrodes. The 3D structured Li(4)Ti(5)O(12)/graphene hybrid reported herein could be a promising candidate for a safe, low-cost, high-power anode for lithium ion batteries, and our seeding-growth-sintering method for decorating graphene with active material will offer an effective upgrade on highly insulating Li(4)Ti(5)O(12) materials.

13.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 514-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531485

RESUMO

Murine protein serine/threonine kinase 38 (MPK38) is the murine orthologue of human maternal embryonic leucine-zipper kinase (MELK), which belongs to the SNF1/AMPK family. MELK is considered to be a promising drug target for anticancer therapy because overexpression and hyperactivation of MELK is correlated with several human cancers. Activation of MPK38 requires the extended sequence (ExS) containing the ubiquitin-associated (UBA) linker and UBA domain and phosphorylation of the activation loop. However, the activation mechanism of MPK38 is unknown. This paper reports the crystal structure of MPK38 (T167E), which mimics a phosphorylated state of the activation loop, in complex with AMP-PNP. In the MPK38 structure, the UBA linker forces an inward movement of the αC helix. Phosphorylation of the activation loop then induces movement of the activation loop towards the C-lobe and results in interlobar cleft closure. These processes generate a fully active state of MPK38. This structure suggests that MPK38 has a similar molecular mechanism regulating activation as in other kinases of the SNF1/AMPK family.


Assuntos
Adenilil Imidodifosfato/química , Proteínas Serina-Treonina Quinases/química , Ubiquitina/química , Animais , Cristalografia por Raios X , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Camundongos , Modelos Moleculares , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ubiquitina/genética
14.
Nanotechnology ; 25(34): 345601, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25092115

RESUMO

We report on a one-step method for preparing nitrogen doped (N-doped) meso-/microporous hybrid carbon material (NCF) via the heat treatment of used cigarette filters under a nitrogen-containing atmosphere. The used cigarette filter, which is mostly composed of cellulose acetate fibers, can be transformed into a porous carbon material that contains both the mesopores and micropores spontaneously. The unique self-developed pore structure allowed a favorable pathway for electrolyte permeation and contact probability, resulting in the extended rate capability for the supercapacitor. The NCF exhibited a better rate capability and higher specific capacitance (153.8 F g(-1)) compared to that of conventional activated carbon (125.0 F g(-1)) at 1 A g(-1). These findings indicate that the synergistic combination of well-developed meso-/micropores, an enlarged surface area and pseudocapacitive behavior leads to the desired supercapacitive performance. The prepared carbon material is capable of reproducing its electrochemical performance during the 6000 cycles required for charge and discharge measurements.


Assuntos
Celulose/análogos & derivados , Capacitância Elétrica , Eletrodos , Produtos do Tabaco , Celulose/química , Eletroquímica , Nitrogênio/química , Porosidade
15.
Front Vet Sci ; 11: 1298215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38528871

RESUMO

Brain perfusion allows for the evaluation of cerebral hemodynamics, particularly in brain infarcts and tumors. Computed tomography (CT) perfusion (CTP) provides reliable data; however, it has a limited scan field of view and radiation exposure. Magnetic resonance (MR) perfusion provides detailed imaging of small structures and a wide scan field of view. However, no study has compared CTP and MR perfusion and assessed the correlation between the perfusion parameters measured using CTP and MR perfusion. The aim of the present study was to assess the correlation and agreement of the cerebral perfusion derived from dynamic susceptibility contrast (DSC)-MRI and CTP in dogs. In this crossover design study, the cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time, and time to peak were measured in the temporal cerebral cortex, caudate nucleus, thalamus, piriform lobe, and hippocampus using CTP and DSC-MRI in six healthy beagle dogs and a dog with a pituitary tumor. On the color map of healthy beagles, blood vessels and the perivascular brain parenchyma appeared as red-green, indicating high perfusion, and the areas distant from the vessels appeared as green-blue, indicating low perfusion levels in CTP and DSC-MRI. CTP parameters were highest in the piriform lobe (CBF = 121.11 ± 12.78 mL/100 g/min and CBV = 8.70 ± 2.04 mL/100 g) and lowest in the thalamus (CBF = 63.75 ± 25.24 mL/100 g/min and CBV = 4.02 ± 0.55 mL/100 g). DSC-MRI parameters were also highest in the piriform lobe (CBF = 102.31 ± 14.73 mL/100 g/min and CBV = 3.17 ± 1.23 mL/100 g) and lowest in the thalamus (CBF = 37.73 ± 25.11 mL/100 g/min and CBV = 0.81 ± 0.44 mL/100 g) although there was no statistical correlation in the quantitative perfusion parameters between CTP and DSC-MRI. In a dog with a pituitary tumor, the color map of the tumor appeared as a red scale, indicating high perfusion and higher CBF and CBV on CTP (149 mL/100 g and 20 mL/100 g/min) and on DSC-MRI (116.3 mL/100 g and 15.32 mL/100 g/min) compared to those measured in healthy dogs. These findings indicate that DSC-MRI and CTP maps exhibit comparability and interchangeability in the assessment of canine brain perfusion.

16.
BMB Rep ; 57(7): 311-317, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38919012

RESUMO

Brain organoid is a three-dimensional (3D) tissue derived from stem cells such as induced pluripotent stem cells (iPSCs) embryonic stem cells (ESCs) that reflect real human brain structure. It replicates the complexity and development of the human brain, enabling studies of the human brain in vitro. With emerging technologies, its application is various, including disease modeling and drug screening. A variety of experimental methods have been used to study structural and molecular characteristics of brain organoids. However, electrophysiological analysis is necessary to understand their functional characteristics and complexity. Although electrophysiological approaches have rapidly advanced for monolayered cells, there are some limitations in studying electrophysiological and neural network characteristics due to the lack of 3D characteristics. Herein, electrophysiological measurement and analytical methods related to neural complexity and 3D characteristics of brain organoids are reviewed. Overall, electrophysiological understanding of brain organoids allows us to overcome limitations of monolayer in vitro cell culture models, providing deep insights into the neural network complex of the real human brain and new ways of disease modeling. [BMB Reports 2024; 57(7): 311-317].


Assuntos
Encéfalo , Células-Tronco Pluripotentes Induzidas , Organoides , Organoides/fisiologia , Organoides/citologia , Humanos , Encéfalo/fisiologia , Encéfalo/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fenômenos Eletrofisiológicos , Técnicas de Cultura de Células/métodos
17.
Front Vet Sci ; 11: 1298133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352037

RESUMO

Shoulder disease is a common cause of forelimb lameness in dogs. Determining the precise underlying cause of shoulder lameness can be challenging, especially in veterinary practice. Computerized tomography (CT) is often the preferred imaging modality for bone evaluation; however, it uses ionizing radiation and provides limited soft tissue contrast. Conversely, magnetic resonance imaging (MRI) offers excellent soft tissue contrast but has limitations in bone imaging. This study aimed to introduce a new technical innovation that enhances cortical and trabecular bone contrast on MRI, which we refer to as Fast Field Echo Resembling a CT Using Restricted Echo-Spacing (FRACTURE). In this prospective pilot study, we aimed to evaluate the use of FRACTURE, CT, and conventional MRI sequences in assessing the normal canine shoulder using a 3.0 Tesla MRI scanner. Five research beagle dogs were included, and the following pulse sequences were acquired for each dog (1): three-dimensional (3D) FRACTURE, (2) T2-weighted (T2W) images using 3D turbo spin echo (TSE), (3) T1-weighted (T1W) images using 3D TSE, (4) PD-weighted (PDW) images using 3D TSE, and (5) CT. Various parameters, including the delineation of cortical bone (intertubercular groove, greater tubercle, and lesser tubercle), conspicuity of the trabecular bone, shoulder joint visualization, and image quality, were measured for each dog and sequence. In all sequences, the shoulder joint was successfully visualized in all planes with mild motion artifacts. The intertubercular groove was best visualized on CT and FRACTURE. Both the greater and lesser tubercles were easily identified on the CT, FRACTURE, and PDW images. The trabecular pattern scored significantly higher in the CT and FRACTURE images compared to the T1W, T2W, and PDW images. Overall, the visualization of the shoulder joint was excellent in all sequences except for T1W. The use of FRACTURE in combination with conventional MRI sequences holds promise for facilitating not only soft tissue evaluation but also cortical and trabecular bone assessment. The findings from this study in normal dogs can serve as a foundation for further FRACTURE studies in dogs with shoulder diseases.

18.
Acta Neurol Belg ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861245

RESUMO

BACKGROUND AND PURPOSE: Diagnosing Hashimoto's encephalopathy (HE) is challenging. In contrast to other types of autoimmune encephalitis, HE shows an excellent response to steroid treatment. We aimed to investigate the rates of antithyroid antibodies (ATAs) and probable HE in patients with unexplained mental dysfunction and compare the clinical characteristics between the good- and poor-outcome groups. METHODS: We retrospectively reviewed the medical records and electroencephalography (EEG) and neuroimaging findings of patients admitted to the Department of Neurology of our hospital from March 1, 2006, to February 28, 2023. Using our proposed diagnostic criteria for probable HE, we compared the clinical characteristics between the good- and poor-outcome groups. We also investigated the rates of ATA positivity and probable HE. RESULTS: In total, 198 patients exhibited altered mentation, rapidly progressive cognitive decline, or myoclonus. ATA tests were performed on 86 patients, and the detection rates of ATAs and probable HE were 29.1% and 25.6%, respectively. Of the 22 patients enrolled, the good- and poor-outcome groups comprised 19 and 3 patients, respectively. Clinical seizures occurred in seven patients. Nonconvulsive status epilepticus on EEG was observed in six patients, all of whom were intractable to antiepileptic drugs. Nineteen of 21 patients (90.5%) treated with immunosuppressants showed good outcomes. CONCLUSIONS: HE is a rare clinical disorder, but not as rare as previously thought. When HE is suspected, steroids should be considered the first-line treatment. Early diagnosis and adequate treatment are critical to achieve good outcomes in HE.

19.
Nanotechnology ; 24(2): 025602, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23220858

RESUMO

Silicon nanoparticles trapped in an ordered mesoporous carbon composite were prepared by a one-step self-assembly with solvent evaporation using the triblock copolymer Pluronic F127 and a resorcinol-formaldehyde polymer as the templating agent and carbon precursor respectively. Such a one-pot synthesis of Si/ordered mesoporous carbon nanocomposite is suitable for large-scale synthesis. Characterization confirmed that the Si nanoparticles were trapped in the ordered mesoporous carbon, as evidenced by transmission electron microscopy, x-ray diffraction analysis and nitrogen sorption isotherms. The composite showed a high reversible capacity above 700 mA h g(-1) during 50 cycles at 2 A g(-1). The improved electrochemical performance of the composite can be ascribed to the buffering effect of spaces formed in the ordered pore channels during the volume expansion of silicon and the rapid movement of lithium ions through the uniform cylindrical pore structure of the mesopores.


Assuntos
Fontes de Energia Elétrica , Eletrodos , Lítio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotubos de Carbono/química , Silício/química , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Íons , Lítio/isolamento & purificação , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula
20.
Nanotechnology ; 24(47): 475402, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24192337

RESUMO

We report on a simple strategy for the direct synthesis of a thin film comprising interconnected NiO nanoparticles deposited on both sides of a graphene sheet via cathodic deposition. For the co-electrodeposition, graphene oxide (GO) is treated with water-soluble cationic poly(ethyleneimine) (PEI) which acts as a stabilizer and trapping agent to form complexes of GO and Ni2+. The positively charged complexes migrate toward the stainless steel substrate, resulting in the electrochemical deposition of PEI-modified GO/Ni(OH)2 at the electrode surface under an applied electric field. The as-synthesized film is then converted to graphene/NiO after annealing at 350 ° C. The interconnected NiO nanoparticles are uniformly deposited on both sides of the graphene surface, as evidenced by field emission scanning electron microscopy, transmission electron microscopy and energy dispersive spectrometry. This graphene/NiO structure shows enhanced electrochemical performance with a large reversible capacity, good cyclic performance and improved electronic conductivity as an anode material for lithium ion batteries. A reversible capacity is retained above 586 mA h g−1 after 50 cycles. The findings reported herein suggest that this strategy can be effectively used to overcome a bottleneck problem associated with the electrochemical production of graphene/metal oxide films for lithium ion battery anodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA