Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Infect Dis ; 73(3): e550-e558, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-32898238

RESUMO

BACKGROUND: Zoonotic coronaviruses have emerged as a global threat by causing fatal respiratory infections. Given the lack of specific antiviral therapies, application of human convalescent plasma retaining neutralizing activity could be a viable therapeutic option that can bridges this gap. METHODS: We traced antibody responses and memory B cells in peripheral blood collected from 70 recovered Middle East respiratory syndrome coronavirus (MERS-CoV) patients for 3 years after the 2015 outbreak in South Korea. We also used a mouse infection model to examine whether the neutralizing activity of collected sera could provide therapeutic benefit in vivo upon lethal MERS-CoV challenge. RESULTS: Anti-spike-specific IgG responses, including neutralizing activity and antibody-secreting memory B cells, persisted for up to 3 years, especially in MERS patients who suffered from severe pneumonia. Mean antibody titers gradually decreased annually by less than 2-fold. Levels of antibody responses were significantly correlated with fever duration, viral shedding periods, and maximum viral loads observed during infection periods. In a transgenic mice model challenged with lethal doses of MERS-CoV, a significant reduction in viral loads and enhanced survival was observed when therapeutically treated with human plasma retaining a high neutralizing titer (> 1/5000). However, this failed to reduce pulmonary pathogenesis, as revealed by pathological changes in lungs and initial weight loss. CONCLUSIONS: High titers of neutralizing activity are required for suppressive effect on the viral replication but may not be sufficient to reduce inflammatory lesions upon fatal infection. Therefore, immune sera with high neutralizing activity must be carefully selected for plasma therapy of zoonotic coronavirus infection.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Coronavirus/tratamento farmacológico , Humanos , Camundongos , República da Coreia , Glicoproteína da Espícula de Coronavírus
2.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967955

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness and has a high mortality of ∼34%. However, since its discovery in 2012, an effective vaccine has not been developed for it. To develop a vaccine against multiple strains of MERS-CoV, we targeted spike glycoprotein (S) using prime-boost vaccination with DNA and insect cell-expressed recombinant proteins for the receptor-binding domain (RBD), S1, S2, SΔTM, or SΔER. Our S subunits were generated using an S sequence derived from the MERS-CoV EMC/2012 strain. We examined humoral and cellular immune responses of various combinations with DNA plasmids and recombinant proteins in mice. Mouse sera immunized with SΔER DNA priming/SΔTM protein boosting showed cross-neutralization against 15 variants of S-pseudovirions and the wild-type KOR/KNIH/002 strain. In addition, these immunizations provided full protection against the KOR/KNIH/002 strain challenge in human DPP4 knock-in mice. These findings suggest that vaccination with the S subunits derived from one viral strain can provide cross-protection against variant MERS-CoV strains with mutations in S. DNA priming/protein boosting increased gamma interferon production, while protein-alone immunization did not. The RBD subunit alone was insufficient to induce neutralizing antibodies, suggesting the importance of structural conformation. In conclusion, heterologous DNA priming with protein boosting is an effective way to induce both neutralizing antibodies and cell-mediated immune responses for MERS-CoV vaccine development. This study suggests a strategy for selecting a suitable platform for developing vaccines against MERS-CoV or other emerging coronaviruses.IMPORTANCE Coronavirus is an RNA virus with a higher mutation rate than DNA viruses. Therefore, a mutation in S-protein, which mediates viral infection by binding to a human cellular receptor, is expected to cause difficulties in vaccine development. Given that DNA-protein vaccines promote stronger cell-mediated immune responses than protein-only vaccination, we immunized mice with various combinations of DNA priming and protein boosting using the S-subunit sequences of the MERS-CoV EMC/2012 strain. We demonstrated a cross-protective effect against wild-type KOR/KNIH/002, a strain with two mutations in the S amino acids, including one in its RBD. The vaccine also provided cross-neutralization against 15 different S-pseudotyped viruses. These suggested that a vaccine targeting one variant of S can provide cross-protection against multiple viral strains with mutations in S. The regimen of DNA priming/Protein boosting can be applied to the development of other coronavirus vaccines.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Proteção Cruzada , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Celular , Imunização Secundária , Imunogenicidade da Vacina , Camundongos , Plasmídeos/administração & dosagem , Plasmídeos/genética , Plasmídeos/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem
3.
Emerg Infect Dis ; 25(6): 1161-1168, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30900977

RESUMO

The unexpectedly large outbreak of Middle East respiratory syndrome in South Korea in 2015 was initiated by an infected traveler and amplified by several "superspreading" events. Previously, we reported the emergence and spread of mutant Middle East respiratory syndrome coronavirus bearing spike mutations (I529T or D510G) with reduced affinity to human receptor CD26 during the outbreak. To assess the potential association of spike mutations with superspreading events, we collected virus genetic information reported during the outbreak and systemically analyzed the relationship of spike sequences and epidemiology. We found sequential emergence of the spike mutations in 2 superspreaders. In vivo virulence of the mutant viruses seems to decline in human patients, as assessed by fever duration in affected persons. In addition, neutralizing activity against these 2 mutant viruses in serum samples from mice immunized with wild-type spike antigen were gradually reduced, suggesting emergence and wide spread of neutralization escapers during the outbreak.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Mutação , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Doenças Transmissíveis Emergentes/história , Doenças Transmissíveis Emergentes/imunologia , Infecções por Coronavirus/história , Infecções por Coronavirus/imunologia , Surtos de Doenças , Feminino , Genótipo , História do Século XXI , Humanos , Masculino , Pessoa de Meia-Idade , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
4.
Sci Adv ; 10(9): eadk6425, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416834

RESUMO

To develop a universal coronavirus (CoV) vaccine, long-term immunity against multiple CoVs, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, Middle East respiratory syndrome (MERS)-CoV, and future CoV strains, is crucial. Following the 2015 Korean MERS outbreak, we conducted a long-term follow-up study and found that although neutralizing antibodies and memory T cells against MERS-CoV declined over 5 years, some recovered patients exhibited increased antibody levels during the COVID-19 pandemic. This likely resulted from cross-reactive immunity induced by SARS-CoV-2 vaccines or infections. A significant correlation in antibody responses across various CoVs indicates shared immunogenic epitopes. Two epitopes-the spike protein's stem helix and intracellular domain-were highly immunogenic after MERS-CoV infection and after SARS-CoV-2 vaccination or infection. In addition, memory T cell responses, especially polyfunctional CD4+ T cells, were enhanced during the pandemic, correlating significantly with MERS-CoV spike-specific antibodies and neutralizing activity. Therefore, incorporating these cross-reactive and immunogenic epitopes into pan-CoV vaccine formulations may facilitate effective vaccine development.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , COVID-19/epidemiologia , Vacinas contra COVID-19 , Pandemias , Seguimentos , SARS-CoV-2 , Imunidade Adaptativa , Epitopos
5.
Cell Rep Med ; 5(5): 101567, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38744277

RESUMO

Bispecific T cell engagers (TCEs) show promising clinical efficacy in blood tumors, but their application to solid tumors remains challenging. Here, we show that Fc-fused IL-7 (rhIL-7-hyFc) changes the intratumoral CD8 T cell landscape, enhancing the efficacy of TCE immunotherapy. rhIL-7-hyFc induces a dramatic increase in CD8 tumor-infiltrating lymphocytes (TILs) in various solid tumors, but the majority of these cells are PD-1-negative tumor non-responsive bystander T cells. However, they are non-exhausted and central memory-phenotype CD8 T cells with high T cell receptor (TCR)-recall capacity that can be triggered by tumor antigen-specific TCEs to acquire tumoricidal activity. Single-cell transcriptome analysis reveals that rhIL-7-hyFc-induced bystander CD8 TILs transform into cycling transitional T cells by TCE redirection with decreased memory markers and increased cytotoxic molecules. Notably, TCE treatment has no major effect on tumor-reactive CD8 TILs. Our results suggest that rhIL-7-hyFc treatment promotes the antitumor efficacy of TCE immunotherapy by increasing TCE-sensitive bystander CD8 TILs in solid tumors.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Interleucina-7 , Linfócitos do Interstício Tumoral , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Interleucina-7/imunologia , Interleucina-7/metabolismo , Humanos , Animais , Imunoterapia/métodos , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Linhagem Celular Tumoral , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Efeito Espectador/imunologia
6.
Front Immunol ; 14: 1201136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275866

RESUMO

Introduction: The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a zoonotic infectious virus that has caused significant outbreaks in the Middle East and beyond. Due to a highly mortality rate, easy transmission, and rapid spread of the MERS-CoV, it remains as a significant public health treat. There is currently no licensed vaccine available to protect against MERS-CoV. Methods: In this study, we investigated whether the proteolytic cleavage sites and fusion peptide domain of the MERS-CoV spike (S) protein could be a vaccine target to elicit the MERS-CoV S protein-specific antibody responses and confer immune protection against MERS-CoV infection. Our results demonstrate that immunization of the proteolytic cleavage sites and the fusion peptide domain using virus-like particle (VLP) induced the MERS-CoV S protein-specific IgG antibodies with capacity to neutralize pseudotyped MERS-CoV infection in vitro. Moreover, proteolytic cleavage sites and the fusion peptide VLP immunization showed a synergistic effect on the immune protection against MERS-CoV infection elicited by immunization with VLP expressing the receptor binding domain (RBD) of the S protein. Additionally, immune evasion of MERS-CoV RBD variants from anti-RBD sera was significantly controlled by anti-proteolytic cleavage sites and the fusion peptide sera. Conclusion and discussion: Our study demonstrates the potential of VLP immunization targeting the proteolytic cleavage sites and the fusion peptide and RBD domains of the MERS-CoV S protein for the development of effective treatments and vaccines against MERS-CoV and related variants.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunização , Peptídeos , Peptídeo Hidrolases
8.
Front Immunol ; 14: 1101808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776879

RESUMO

Introduction: Despite of massive endeavors to characterize inflammation in COVID-19 patients, the core network of inflammatory mediators responsible for severe pneumonia stillremain remains elusive. Methods: Here, we performed quantitative and kinetic analysis of 191 inflammatory factors in 955 plasma samples from 80 normal controls (sample n = 80) and 347 confirmed COVID-19 pneumonia patients (sample n = 875), including 8 deceased patients. Results: Differential expression analysis showed that 76% of plasmaproteins (145 factors) were upregulated in severe COVID-19 patients comparedwith moderate patients, confirming overt inflammatory responses in severe COVID-19 pneumonia patients. Global correlation analysis of the plasma factorsrevealed two core inflammatory modules, core I and II, comprising mainly myeloid cell and lymphoid cell compartments, respectively, with enhanced impact in a severity-dependent manner. We observed elevated IFNA1 and suppressed IL12p40, presenting a robust inverse correlation in severe patients, which was strongly associated with persistent hyperinflammation in 8.3% of moderate pneumonia patients and 59.4% of severe patients. Discussion: Aberrant persistence of pulmonary and systemic inflammation might be associated with long COVID-19 sequelae. Our comprehensive analysis of inflammatory mediators in plasmarevealed the complexity of pneumonic inflammation in COVID-19 patients anddefined critical modules responsible for severe pneumonic progression.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Cinética , Síndrome de COVID-19 Pós-Aguda , Inflamação , Mediadores da Inflamação , Interferon-alfa
10.
J Microbiol ; 60(3): 268-275, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35235178

RESUMO

Since the advent of SARS-CoV-2 in Dec. 2019, the global endeavor to identify the pathogenic mechanism of COVID-19 has been ongoing. Although humoral immunity including neutralizing activity play an important role in protection from the viral pathogen, dysregulated antibody responses may be associated with the pathogenic progression of COVID-19, especially in high-risk individuals. In addition, SARS-CoV-2 spike-specific antibodies acquired by prior infection or vaccination act as immune pressure, driving continuous population turnover by selecting for antibody-escaping mutations. Here, we review accumulating knowledge on the potential role of humoral immune responses in COVID-19, primarily focusing on their beneficial and pathogenic properties. Understanding the multifaceted regulatory mechanisms of humoral responses during SARS-CoV-2 infection can help us to develop more effective therapeutics, as well as protective measures against the ongoing pandemic.


Assuntos
COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
11.
Korean J Intern Med ; 37(1): 201-209, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34565131

RESUMO

BACKGROUND/AIMS: Coronavirus disease 2019 (COVID-19) is associated with acute respiratory syndrome. The mechanisms underlying the different degrees of pneumonia severity in patients with COVID-19 remain elusive. This study provides evidence that COVID-19 is associated with eosinophil-mediated inflammation. METHODS: We performed a retrospective case series of three patients with laboratory and radiologically confirmed COVID-19 pneumonia admitted to Chosun University Hospital. Demographic and clinical data on inflammatory cell lung infiltration and cytokine levels in patients with COVID-19 were collected. RESULTS: Cytological analysis of sputum, tracheal aspirates, and bronchoalveolar lavage fluid (BALF) samples from all three patients revealed massive infiltration of polymorphonuclear cells (PMNs), such as eosinophils and neutrophils. All sputum and BALF specimens contained high levels of eosinophil cationic proteins. The infiltration of PMNs into the lungs, together with elevated levels of natural killer T (NKT) cells in BALF and peripheral blood samples from patients with severe pneumonia in the acute phase was confirmed by flow cytometry. CONCLUSION: These results suggest that the lungs of COVID-19 patients can exhibit eosinophil-mediated inflammation, together with an elevated NKT cell response, which is associated with COVID-19 pneumonia.


Assuntos
COVID-19 , Células T Matadoras Naturais , Eosinofilia Pulmonar , Líquido da Lavagem Broncoalveolar , Eosinófilos , Humanos , Eosinofilia Pulmonar/diagnóstico , Estudos Retrospectivos , SARS-CoV-2
12.
Clin Microbiol Infect ; 28(2): 292-296, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34139334

RESUMO

OBJECTIVES: We aimed to assess the longevity of spike-specific antibody responses and neutralizing activity in the plasma of recovered Middle East respiratory syndrome (MERS) patients. METHODS: We traced the antibody responses and neutralizing activity against MERS coronavirus (MERS-CoV) in peripheral blood samples collected from 70 recovered MERS patients for 5 years after the 2015 MERS outbreak in South Korea. We also measured the half-life of neutralizing antibody titres in the longitudinal specimens. RESULTS: The seropositivity rate persisted for up to 4 years (50.7-56.1%), especially in MERS patients who suffered from severe pneumonia, and then decreased (35.9%) in the fifth year. Although the spike-specific antibody responses decreased gradually, the neutralizing antibody titres decreased more rapidly (half-life: 20 months) in 19 participants without showing negative seroconversion during the study period. Only five (26.3%) participants had neutralizing antibody titres greater than 1/1000 of PRNT50, and a high neutralizing antibody titre over 1/5000 was not detected in the participants at five years after infection. DISCUSSION: The seropositivity rate of the recovered MERS patients persisted up to 4 years after infection and significantly dropped in the fifth year, whereas the neutralizing antibody titres against MERS-CoV decreased more rapidly and were significantly reduced at 4 years after infection.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Coronavirus/epidemiologia , Seguimentos , Humanos , Glicoproteína da Espícula de Coronavírus
13.
Adv Sci (Weinh) ; 9(28): e2203842, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058002

RESUMO

Tertiary lymphoid structures (TLSs) provide specialized niches for immune cells, resulting in improved prognoses for patients undergoing cancer immunotherapy. Shaping TLS-like niches may improve anti-cancer immunity and overcome the current limitations of immune cell-based immunotherapy. Here, it is shown that stromal vascular fraction (SVF) from adipose tissues can enhance dendritic cell (DC)-mediated T cell immunity by inducing ectopic T lymphocyte clusters. SVF cells expanded ex vivo have phenotypes and functions similar to those of fibroblastic reticular cells in a secondary lymphoid organ, and their properties can be modulated using three-dimensional spheroid culture and coculture with DCs spiked with antigen-loaded iron oxide-zinc oxide core-shell nanoparticles. Thereby, the combination of SVF spheroids and mature DCs significantly augments T cell recruitment and retention at the injection site. This strategy elicits enhanced antigen-specific immune response and anti-tumoral immunity in mice, illustrating the potential for a novel immunotherapeutic design using SVF as a structural scaffold for TLS.


Assuntos
Estruturas Linfoides Terciárias , Óxido de Zinco , Animais , Células Dendríticas , Imunidade Celular , Imunoterapia/métodos , Camundongos , Fração Vascular Estromal , Linfócitos T
14.
Viruses ; 13(7)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202029

RESUMO

The current COVID-19 pandemic has highlighted the urgent need to develop effective therapeutic strategies. We evaluated the in vitro antiviral effect against SARS-CoV-2 of a hepatitis B virus (HBV) hexamer peptide, Poly6, which is capable of eliciting an antiviral effect against human immunodeficiency virus -1 (HIV-1), as a novel HIV-1 integrase inhibitor, and a strong anticancer immune response in an IFN-I-dependent manner, as a novel potential adjuvant in anticancer immunotherapy. Here, we report that Poly6 exerts an anti-SARS-CoV-2 effect, with an estimated 50% inhibitory concentration of 2.617 µM, in the human bronchial epithelial cell line, Calu-3 but not in Vero-E6 cells, which are deficient in type 1 interferon (IFN-I) signaling. We proved via assays based on mRNA profiles, inhibitors, or blocking antibodies that Poly6 can exert an anti-SARS-CoV-2 effect in an IFN-I-dependent manner. We also found that Poly6 inhibits IL-6 production enhanced by SARS-CoV-2 in infected Calu-3 cells at both the transcription and the translation levels, mediated via IL-10 induction in an IFN-I-dependent manner. These results indicate the feasibility of Poly6 as an IFN-I-inducing COVID-19 drug with potent antiviral and anti-inflammatory activities.


Assuntos
Antivirais/farmacologia , Células Epiteliais/efeitos dos fármacos , Vírus da Hepatite B/química , Interferon Tipo I/imunologia , Peptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Brônquios/citologia , Brônquios/virologia , Chlorocebus aethiops , Células Epiteliais/imunologia , Células Epiteliais/virologia , Vírus da Hepatite B/genética , Humanos , Pulmão/citologia , Pulmão/virologia , Peptídeos/imunologia , SARS-CoV-2/imunologia , Células Vero
15.
Front Microbiol ; 12: 712260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367117

RESUMO

Despite a clear association of patient's age with COVID-19 severity, there has been conflicting data on the association of viral load with disease severity. Here, we investigated the association of viral load dynamics with patient's age and severity of COVID-19 using a set of respiratory specimens longitudinally collected (mean: 4.8 times/patient) from 64 patients with broad distribution of clinical severity and age during acute phase. Higher viral burden was positively associated with inflammatory responses, as assessed by IL-6, C-reactive protein, and lactate dehydrogenase levels in patients' plasma collected on the same day, primarily in the younger cohort (≤59 years old) and in mild cases of all ages, whereas these were barely detectable in elderly patients (≥60 years old) with critical disease. In addition, viral load dynamics in elderly patients were not significantly different between mild and critical cases, even though more enhanced inflammation was consistently observed in the elderly group when compared to the younger group during the acute phase of infection. The positive correlation of viral load with disease severity in younger patients may explain the increased therapeutic responsiveness to current antiviral drugs and neutralizing antibody therapies in younger patients compared to elderly patients. More careful intervention against aging-associated inflammation might be required to mitigate severe disease progression and reduce fatality in COVID-19 patients more than 60 years old.

16.
Cell Rep ; 37(1): 109798, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34587481

RESUMO

Despite the worldwide effect of the coronavirus disease 2019 (COVID-19) pandemic, the underlying mechanisms of fatal viral pneumonia remain elusive. Here, we show that critical COVID-19 is associated with enhanced eosinophil-mediated inflammation when compared to non-critical cases. In addition, we confirm increased T helper (Th)2-biased adaptive immune responses, accompanying overt complement activation, in the critical group. Moreover, enhanced antibody responses and complement activation are associated with disease pathogenesis as evidenced by formation of immune complexes and membrane attack complexes in airways and vasculature of lung biopsies from six fatal cases, as well as by enhanced hallmark gene set signatures of Fcγ receptor (FcγR) signaling and complement activation in myeloid cells of respiratory specimens from critical COVID-19 patients. These results suggest that SARS-CoV-2 infection may drive specific innate immune responses, including eosinophil-mediated inflammation, and subsequent pulmonary pathogenesis via enhanced Th2-biased immune responses, which might be crucial drivers of critical disease in COVID-19 patients.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Proteínas do Sistema Complemento/imunologia , Eosinófilos/imunologia , Inflamação/imunologia , Pneumonia Viral/imunologia , SARS-CoV-2/imunologia , Imunidade Adaptativa , Adulto , Idoso , Idoso de 80 Anos ou mais , Complexo Antígeno-Anticorpo/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Eosinófilos/virologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/virologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/patologia , Lesão Pulmonar/virologia , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/metabolismo , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Células Th2/imunologia , Carga Viral , Adulto Jovem
17.
Virus Res ; 278: 197863, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31945421

RESUMO

Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes severe pulmonary infection, with ∼35 % mortality. Spike glycoprotein (S) of MERS-CoV is a key target for vaccines and therapeutics because S mediates viral entry and membrane-fusion to host cells. Here, four different S subunit proteins, receptor-binding domain (RBD; 358-606 aa), S1 (1-751 aa), S2 (752-1296 aa), and SΔTM (1-1296 aa), were generated using the baculoviral system and immunized in mice to develop neutralizing antibodies. We developed 77 hybridomas and selected five neutralizing mAbs by immunization with SΔTM against MERS-CoV EMC/2012 strain S-pseudotyped lentivirus. However, all five monoclonal antibodies (mAb) did not neutralize the pseudotyped V534A mutation. Additionally, one mAb RBD-14F8 did not show neutralizing activity against pseudoviruses with amino acid substitution of L506 F or D509 G (England1 strain, EMC/2012 L506 F, and EMC/2012 D509 G), and RBD-43E4 mAb could not neutralize the pseudotyped I529 T mutation, while three other neutralizing mAbs showed broad neutralizing activity. This implies that the mutation in residue 506-509, 529, and 534 of S is critical to generate neutralization escape variants of MERS-CoV. Interestingly, all five neutralizing mAbs have binding affinity to RBD, although most mAbs generated by RBD did not have neutralizing activity. Additionally, chimeric antibodies of RBD-14F8 and RBD-43E4 with human Fc and light chain showed neutralizing effect against wild type MERS-CoV KOR/KNIH/002, similar to the original mouse mAbs. Thus, our mAbs can be utilized for the identification of specific mutations of MERS-CoV.


Assuntos
Anticorpos Monoclonais/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Linhagem Celular , Proteção Cruzada , Epitopos , Humanos , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Mutação , Testes de Neutralização , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
18.
19.
Virology ; 518: 324-327, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29587190

RESUMO

Dipeptidyl peptidase 4 (DPP4) is a receptor for MERS-CoV. The soluble form of DPP4 (sDPP4) circulates systematically and can competitively inhibit MERS-CoV entry into host cells. Here, we measured the concentration of sDPP4 in the plasma and sputa of 14 MERS-CoV-infected patients of various degrees of disease severity. The concentration of sDPP4 in the plasma of MERS patients (474.76 ±â€¯108.06 ng/ml) was significantly lower than those of healthy controls (703.42 ±â€¯169.96 ng/ml), but there were no significant differences among the patient groups. Interestingly, plasma levels of IL-10 and EGF were negatively and positively correlated with sDPP4 concentrations, respectively. The sDPP4 levels in sputa were less than 300 ng/ml. Viral infection was inhibited by 50% in the presence of more than 8000 ng/ml of sDPP4. Therefore, sDPP4 levels in the plasma of MERS patients are significantly reduced below the threshold needed to exert an antiviral effect against MERS-CoV infection.


Assuntos
Infecções por Coronavirus/patologia , Dipeptidil Peptidase 4/sangue , Plasma/química , Dipeptidil Peptidase 4/análise , Família de Proteínas EGF/sangue , Humanos , Concentração Inibidora 50 , Interleucina-10/sangue , Escarro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA