Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Carcinog ; 61(10): 941-957, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856887

RESUMO

Dietary rice bran (RB) has shown capacity to influence metabolism by modulation of gut microbiota in individuals at risk for colorectal cancer (CRC), which warranted attention for delineating mechanisms for bidirectional influences and cross-feeding between the host and RB-modified gut microbiota to reduce CRC. Accordingly, in the present study, fermented rice bran (FRB, fermented with a RB responsive microbe Bifidobacterium longum), and non-fermented RB were fed as 10% w/w (diet) to gut microbiota-intactspf or germ-free micegf to investigate comparative efficacy against inflammation-associated azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CRC. Results indicated both microbiota-dependent and independent mechanisms for RB meditated protective efficacy against CRC that was associated with reduced neoplastic lesion size and local-mucosal/systemic inflammation, and restoration of colonic epithelial integrity. Enrichment of beneficial commensals (such as, Clostridiales, Blautia, Roseburia), phenolic metabolites (benzoate and catechol metabolism), and dietary components (ferulic acid-4 sulfate, trigonelline, and salicylate) were correlated with anti-CRC efficacy. Germ-free studies revealed gender-specific physiological variables could differentially impact CRC growth and progression. In the germ-free females, the RB dietary treatment showed a ∼72% reduction in the incidence of colonic epithelial erosion when compared to the ∼40% reduction in FRB-fed micegf . Ex vivo fermentation of RB did not parallel the localized-protective benefits of gut microbial metabolism by RB in damaged colonic tissues. Findings from this study suggest potential needs for safety considerations of fermented fiber rich foods as dietary strategies against severe inflammation-associated colon tumorigenesis (particularly with severe damage to the colonic epithelium).


Assuntos
Bifidobacterium longum , Microbioma Gastrointestinal , Oryza , Animais , Azoximetano/toxicidade , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Colo/patologia , Sulfato de Dextrana/toxicidade , Dieta , Modelos Animais de Doenças , Feminino , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Oryza/metabolismo
2.
Pediatr Surg Int ; 38(11): 1541-1553, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35951092

RESUMO

PURPOSE: Hirschsprung disease is a neurointestinal disease that occurs due to failure of enteric neural crest-derived cells to complete their rostrocaudal migration along the gut mesenchyme, resulting in aganglionosis along variable lengths of the distal bowel. Despite the effective surgery that removes the aganglionic segment, children with Hirschsprung disease remain at high risk for developing a potentially life-threatening enterocolitis (Hirschsprung-associated enterocolitis). Although the etiology of this enterocolitis remains poorly understood, several recent studies in both mouse models and in human subjects suggest potential involvement of gastrointestinal microbiota in the underlying pathogenesis of Hirschsprung-associated enterocolitis. METHODS: We present the first study to exploit the Illumina MiSeq next-generation sequencing platform within a longitudinal framework focused on microbiomes of Hirschsprung-associated enterocolitis in five patients. We analyzed bacterial communities from fecal samples collected at different timepoints starting from active enterocolitis and progressing into remission. RESULTS: We observed compositional differences between patients largely attributable to variability in age at the time of sample collection. Remission samples across patients exhibited compositional similarity, including enrichment of Blautia, while active enterocolitis samples showed substantial variability in composition. CONCLUSIONS: Overall, our findings provide continued support for the role of GI microbiota in the pathogenesis of Hirschsprung-associated enterocolitis.


Assuntos
Enterocolite , Doença de Hirschsprung , Microbiota , Animais , Criança , Enterocolite/etiologia , Fezes , Doença de Hirschsprung/cirurgia , Humanos , Camundongos , Projetos Piloto
3.
Biomedicines ; 9(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546192

RESUMO

Rice bran, removed from whole grain rice for white rice milling, has demonstrated efficacy for the control and suppression of colitis and colon cancer in multiple animal models. Dietary rice bran intake was shown to modify human stool metabolites as a result of modifications to metabolism by gut microbiota. In this study, human stool microbiota from colorectal cancer (CRC) survivors that consumed rice bran daily was examined by fecal microbiota transplantation (FMT) for protection from azoxymethane and dextran sodium sulfate (AOM/DSS) induced colon carcinogenesis in germ-free mice. Mice transfaunated with rice bran-modified microbiota communities (RMC) harbored fewer neoplastic lesions in the colon and displayed distinct enrichment of Flavonifractor and Oscillibacter associated with colon health, and the depletion of Parabacteroides distasonis correlated with increased tumor burden. Two anti-cancer metabolites, myristoylcarnitine and palmitoylcarnitine were increased in the colon of RMC transplanted mice. Trimethylamine-N-oxide (TMAO) and tartarate that are implicated in CRC development were reduced in murine colon tissue after FMT with rice bran-modified human microbiota. Findings from this study show that rice bran modified gut microbiota from humans confers protection from colon carcinogenesis in mice and suggests integrated dietary-FMT intervention strategies should be tested for colorectal cancer control, treatment, and prevention.

4.
World J Gastroenterol ; 26(3): 335-352, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31988593

RESUMO

BACKGROUND: Obesity is a risk factor for colorectal cancer, yet metabolic distinctions between healthy right and left colon tissue, before cancer is diagnosed, remains largely unknown. This study compared right-ascending and left-descending colon tissue metabolomes to identify differences from the stool metabolome in normal weight, overweight, and obese adults. AIM: To examine right and left colon tissue metabolites according to body mass index that may serve as mechanistic targets for interventions and biomarkers for colon cancer risk. METHODS: Global, non-targeted metabolomics was applied to assess right-ascending and left-descending colon tissue collected from healthy adults undergoing screening colonoscopies to test the hypothesis that BMI differentially impacts colon tissue metabolite profiles. The colon tissue and stool metabolome of healthy adults (n = 24) was analyzed for metabolite signatures and metabolic pathway networks implicated in progression of colorectal cancer. RESULTS: Ascending and descending colon contained 504 host, food, and microbiota-derived metabolites from normal weight, overweight and obese adults grouped according to body mass index. Amino acids, lipids, and nucleotides were among the chemical types that further differentiated from the stool metabolite profiles. Normal weight adults had 46 significantly different metabolites between ascending and descending colon tissue locations, whereas there were 37 metabolite differences in overweight and 28 metabolite differences for obese adults (P < 0.05). Obese adults had trimethylamine N-oxide, endocannabinoids and monoacylglycerols with different relative abundances identified between ascending and descending colon. Primary and secondary bile acids, vitamins, and fatty acids also showed marked relative abundance differences in colon tissue from overweight/obese adults. CONCLUSION: There were metabolite profile differences between right-ascending and left-descending colon tissue in healthy adults. Colon lipids and other metabolites in obese and overweight adults were distinguished from normal weight participants and associated with gut inflammation, nutrient absorption, and products of microbiota metabolism.


Assuntos
Colo Ascendente/metabolismo , Colo Descendente/metabolismo , Metaboloma , Obesidade/metabolismo , Sobrepeso/metabolismo , Adulto , Biomarcadores Tumorais/metabolismo , Índice de Massa Corporal , Neoplasias Colorretais/etiologia , Fezes/química , Feminino , Microbioma Gastrointestinal/fisiologia , Voluntários Saudáveis , Humanos , Peso Corporal Ideal/fisiologia , Absorção Intestinal/fisiologia , Metabolismo dos Lipídeos , Lipídeos/análise , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Sobrepeso/complicações , Fatores de Risco
5.
Front Microbiol ; 9: 1598, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30079054

RESUMO

Murine models have become essential tools for understanding the complex interactions between gut microbes, their hosts, and disease. While many intra-facility factors are known to influence the structure of mouse microbiomes, the contribution of inter-facility variation to mouse microbiome composition, especially in the context of disease, remains under-investigated. We replicated microbiome experiments using identical mouse lines housed in two separate animal facilities and report drastic differences in composition of microbiomes based upon animal facility of origin. We observed facility-specific microbiome signatures in the context of a disease model [the Ednrb (endothelin receptor type B) Hirschsprung disease mouse] and in normal C57BL/6J mice. Importantly, these facility differences were independent of cage, sex, or sequencing-related influence. In addition, we investigated the reproducibility of microbiome dysbiosis previously associated with Ednrb-/- (knock-out; KO) mice. While we observed genotype-based differences in composition between wild-type (WT) and KO mice, these differences were inconsistent with the previously reported conclusions. Furthermore, the genotype-based differences were not identical across animal facilities. Despite this, through differential abundance testing, we identified several conserved candidate taxa and candidate operational taxonomic units that may play a role in disease promotion or protection. Overall, our findings raise the possibility that previously reported microbiome-disease associations from murine studies conducted in a single facility may be heavily influenced by facility-specific effects. More generally, these results provide a strong rationale for replication of mouse microbiome studies at multiple facilities, and for the meticulous collection of metadata that will allow the confounding effects of facility to be more specifically identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA