Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(6): e17363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864471

RESUMO

Recently burned boreal forests have lower aboveground fuel loads, generating a negative feedback to subsequent wildfires. Despite this feedback, short-interval reburns (≤20 years between fires) are possible under extreme weather conditions. Reburns have consequences for ecosystem recovery, leading to enduring vegetation change. In this study, we characterize the strength of the fire-fuel feedback in recently burned Canadian boreal forests and the weather conditions that overwhelm resistance to fire spread in recently burned areas. We used a dataset of daily fire spread for thousands of large boreal fires, interpolated from remotely sensed thermal anomalies to which we associated local weather from ERA5-Land for each day of a fire's duration. We classified days with >3 ha of fire growth as spread days and defined burned pixels overlapping a fire perimeter ≤20 years old as short-interval reburns. Results of a logistic regression showed that the odds of fire spread in recently burned areas were ~50% lower than in long-interval fires; however, all Canadian boreal ecozones experienced short-interval reburning (1981-2021), with over 100,000 ha reburning annually. As fire weather conditions intensify, the resistance to fire spread declines, allowing fire to spread in recently burned areas. The weather associated with short-interval fire spread days was more extreme than the conditions during long-interval spread, but overall differences were modest (e.g. relative humidity 2.6% lower). The frequency of fire weather conducive to short-interval fire spread has significantly increased in the western boreal forest due to climate warming and drying (1981-2021). Our results suggest an ongoing degradation of fire-fuel feedbacks, which is likely to continue with climatic warming and drying.


Assuntos
Florestas , Tempo (Meteorologia) , Incêndios Florestais , Incêndios Florestais/prevenção & controle , Incêndios Florestais/estatística & dados numéricos , Mudança Climática , Aquecimento Global
2.
Glob Chang Biol ; 29(10): 2681-2696, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880282

RESUMO

Species across the planet are shifting their ranges to track suitable climate conditions in response to climate change. Given that protected areas have higher quality habitat and often harbor higher levels of biodiversity compared to unprotected lands, it is often assumed that protected areas can serve as steppingstones for species undergoing climate-induced range shifts. However, there are several factors that may impede successful range shifts among protected areas, including the distance that must be traveled, unfavorable human land uses and climate conditions along potential movement routes, and lack of analogous climates. Through a species-agnostic lens, we evaluate these factors across the global terrestrial protected area network as measures of climate connectivity, which is defined as the ability of a landscape to facilitate or impede climate-induced movement. We found that over half of protected land area and two-thirds of the number of protected units across the globe are at risk of climate connectivity failure, casting doubt on whether many species can successfully undergo climate-induced range shifts among protected areas. Consequently, protected areas are unlikely to serve as steppingstones for a large number of species under a warming climate. As species disappear from protected areas without commensurate immigration of species suited to the emerging climate (due to climate connectivity failure), many protected areas may be left with a depauperate suite of species under climate change. Our findings are highly relevant given recent pledges to conserve 30% of the planet by 2030 (30 × 30), underscore the need for innovative land management strategies that allow for species range shifts, and suggest that assisted colonization may be necessary to promote species that are adapted to the emerging climate.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Biodiversidade , Mudança Climática , Viagem
3.
Glob Chang Biol ; 29(24): 7029-7050, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37706328

RESUMO

Climate warming, land use change, and altered fire regimes are driving ecological transformations that can have critical effects on Earth's biota. Fire refugia-locations that are burned less frequently or severely than their surroundings-may act as sites of relative stability during this period of rapid change by being resistant to fire and supporting post-fire recovery in adjacent areas. Because of their value to forest ecosystem persistence, there is an urgent need to anticipate where refugia are most likely to be found and where they align with environmental conditions that support post-fire tree recruitment. Using biophysical predictors and patterns of burn severity from 1180 recent fire events, we mapped the locations of potential fire refugia across upland conifer forests in the southwestern United States (US) (99,428 km2 of forest area), a region that is highly vulnerable to fire-driven transformation. We found that low pre-fire forest cover, flat slopes or topographic concavities, moderate weather conditions, spring-season burning, and areas affected by low- to moderate-severity fire within the previous 15 years were most commonly associated with refugia. Based on current (i.e., 2021) conditions, we predicted that 67.6% and 18.1% of conifer forests in our study area would contain refugia under moderate and extreme fire weather, respectively. However, potential refugia were 36.4% (moderate weather) and 31.2% (extreme weather) more common across forests that experienced recent fires, supporting the increased use of prescribed and resource objective fires during moderate weather conditions to promote fire-resistant landscapes. When overlaid with models of tree recruitment, 23.2% (moderate weather) and 6.4% (extreme weather) of forests were classified as refugia with a high potential to support post-fire recruitment in the surrounding landscape. These locations may be disproportionately valuable for ecosystem sustainability, providing habitat for fire-sensitive species and maintaining forest persistence in an increasingly fire-prone world.


Assuntos
Incêndios , Traqueófitas , Ecossistema , Florestas , Árvores , Tempo (Meteorologia)
4.
Proc Natl Acad Sci U S A ; 117(47): 29730-29737, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168732

RESUMO

Researchers are increasingly examining patterns and drivers of postfire forest recovery amid growing concern that climate change and intensifying fires will trigger ecosystem transformations. Diminished seed availability and postfire drought have emerged as key constraints on conifer recruitment. However, the spatial and temporal extent to which recurring modes of climatic variability shape patterns of postfire recovery remain largely unexplored. Here, we identify a north-south dipole in annual climatic moisture deficit anomalies across the Interior West of the US and characterize its influence on forest recovery from fire. We use annually resolved establishment models from dendrochronological records to correlate this climatic dipole with short-term postfire juvenile recruitment. We also examine longer-term recovery trajectories using Forest Inventory and Analysis data from 989 burned plots. We show that annual postfire ponderosa pine recruitment probabilities in the northern Rocky Mountains (NR) and the southwestern US (SW) track the strength of the dipole, while declining overall due to increasing aridity. This indicates that divergent recovery trajectories may be triggered concurrently across large spatial scales: favorable conditions in the SW can correspond to drought in the NR that inhibits ponderosa pine establishment, and vice versa. The imprint of this climatic dipole is manifest for years postfire, as evidenced by dampened long-term likelihoods of juvenile ponderosa pine presence in areas that experienced postfire drought. These findings underscore the importance of climatic variability at multiple spatiotemporal scales in driving cross-regional patterns of forest recovery and have implications for understanding ecosystem transformations and species range dynamics under global change.


Assuntos
Mudança Climática , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Florestas , Incêndios Florestais , Secas , Temperatura Alta/efeitos adversos , Modelos Estatísticos , Pinus ponderosa , Dispersão Vegetal , Análise Espaço-Temporal , Estados Unidos
5.
Proc Natl Acad Sci U S A ; 116(13): 6193-6198, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30858310

RESUMO

Climate change is increasing fire activity in the western United States, which has the potential to accelerate climate-induced shifts in vegetation communities. Wildfire can catalyze vegetation change by killing adult trees that could otherwise persist in climate conditions no longer suitable for seedling establishment and survival. Recently documented declines in postfire conifer recruitment in the western United States may be an example of this phenomenon. However, the role of annual climate variation and its interaction with long-term climate trends in driving these changes is poorly resolved. Here we examine the relationship between annual climate and postfire tree regeneration of two dominant, low-elevation conifers (ponderosa pine and Douglas-fir) using annually resolved establishment dates from 2,935 destructively sampled trees from 33 wildfires across four regions in the western United States. We show that regeneration had a nonlinear response to annual climate conditions, with distinct thresholds for recruitment based on vapor pressure deficit, soil moisture, and maximum surface temperature. At dry sites across our study region, seasonal to annual climate conditions over the past 20 years have crossed these thresholds, such that conditions have become increasingly unsuitable for regeneration. High fire severity and low seed availability further reduced the probability of postfire regeneration. Together, our results demonstrate that climate change combined with high severity fire is leading to increasingly fewer opportunities for seedlings to establish after wildfires and may lead to ecosystem transitions in low-elevation ponderosa pine and Douglas-fir forests across the western United States.


Assuntos
Mudança Climática , Florestas , Árvores/crescimento & desenvolvimento , Incêndios Florestais , Altitude , Pinus ponderosa/crescimento & desenvolvimento , Pseudotsuga/crescimento & desenvolvimento
6.
Ecol Appl ; 31(8): e02433, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34339088

RESUMO

We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include the following: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great? Can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? And (10) is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes.


Assuntos
Incêndios , Incêndios Florestais , Mudança Climática , Florestas , América do Norte
7.
Glob Chang Biol ; 26(5): 2944-2955, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31961042

RESUMO

Climate connectivity, the ability of a landscape to promote or hinder the movement of organisms in response to a changing climate, is contingent on multiple factors including the distance organisms need to move to track suitable climate over time (i.e. climate velocity) and the resistance they experience along such routes. An additional consideration which has received less attention is that human land uses increase resistance to movement or alter movement routes and thus influence climate connectivity. Here we evaluate the influence of human land uses on climate connectivity across North America by comparing two climate connectivity scenarios, one considering climate change in isolation and the other considering climate change and human land uses. In doing so, we introduce a novel metric of climate connectivity, 'human exposure', that quantifies the cumulative exposure to human activities that organisms may encounter as they shift their ranges in response to climate change. We also delineate potential movement routes and evaluate whether the protected area network supports movement corridors better than non-protected lands. We found that when incorporating human land uses, climate connectivity decreased; climate velocity increased on average by 0.3 km/year and cumulative climatic resistance increased for ~83% of the continent. Moreover, ~96% of movement routes in North America must contend with human land uses to some degree. In the scenario that evaluated climate change in isolation, we found that protected areas do not support climate corridors at a higher rate than non-protected lands across North America. However, variability is evident, as many ecoregions contain protected areas that exhibit both more and less representation of climate corridors compared to non-protected lands. Overall, our study indicates that previous evaluations of climate connectivity underestimate climate change exposure because they do not account for human impacts.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Mudança Climática , Atividades Humanas , Humanos , América do Norte
8.
Bioscience ; 70(8): 659-673, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32821066

RESUMO

Changing disturbance regimes and climate can overcome forest ecosystem resilience. Following high-severity fire, forest recovery may be compromised by lack of tree seed sources, warmer and drier postfire climate, or short-interval reburning. A potential outcome of the loss of resilience is the conversion of the prefire forest to a different forest type or nonforest vegetation. Conversion implies major, extensive, and enduring changes in dominant species, life forms, or functions, with impacts on ecosystem services. In the present article, we synthesize a growing body of evidence of fire-driven conversion and our understanding of its causes across western North America. We assess our capacity to predict conversion and highlight important uncertainties. Increasing forest vulnerability to changing fire activity and climate compels shifts in management approaches, and we propose key themes for applied research coproduced by scientists and managers to support decision-making in an era when the prefire forest may not return.

9.
Glob Chang Biol ; 24(11): 5318-5331, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29963741

RESUMO

As climatic conditions shift in coming decades, persistence of many populations will depend on their ability to colonize habitat newly suitable for their climatic requirements. Opportunities for such range shifts may be limited unless areas that facilitate dispersal under climate change are identified and protected from land uses that impede movement. While many climate adaptation strategies focus on identifying refugia, this study is the first to characterize areas which merit protection for their role in promoting climate connectivity at a continental extent. We identified climate connectivity areas across North America by delineating paths between current climate types and their future analogs that avoided nonanalogous climates, and used centrality metrics to rank the contribution of each location to facilitating dispersal across the landscape. The distribution of connectivity areas was influenced by climatic and topographic factors at multiple spatial scales. Results were robust to uncertainty in the magnitude of future climate change arising from differing emissions scenarios and general circulation models, but sensitive to analysis extent and assumptions concerning dispersal behavior and maximum dispersal distance. Paths were funneled along north-south trending passes and valley systems and away from areas of novel and disappearing climates. Climate connectivity areas, where many potential dispersal paths overlapped, were distinct from refugia and thus poorly captured by many existing conservation strategies. Existing protected areas with high connectivity values were found in southern Mexico, the southwestern US, and western and arctic Canada and Alaska. Ecoregions within the Isthmus of Tehuantepec, Great Plains, eastern temperate forests, high Arctic, and western Canadian Cordillera hold important climate connectivity areas which merit increased conservation focus due to anthropogenic pressures or current low levels of protection. Our coarse-filter climate-type-based results complement and contextualize species-specific analyses and add a missing dimension to climate adaptation planning by identifying landscape features which promote connectivity among refugia.


Assuntos
Mudança Climática , Adaptação Fisiológica , Animais , Ecossistema , Previsões , Modelos Teóricos , América do Norte , Refúgio de Vida Selvagem , Especificidade da Espécie
11.
Ecol Appl ; 28(2): 573-586, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29280248

RESUMO

In many forested ecosystems, it is increasingly recognized that the probability of burning is substantially reduced within the footprint of previously burned areas. This self-limiting effect of wildland fire is considered a fundamental emergent property of ecosystems and is partly responsible for structuring landscape heterogeneity (i.e., mosaics of different age classes), thereby reducing the likelihood of uncharacteristically large fires in regions with active fire regimes. However, the strength and longevity of this self-limiting phenomenon is not well understood in most fire-prone ecosystems. In this study, we quantify the self-limiting effect in terms of its strength and longevity for five fire-prone study areas in western North America and investigate how each measure varies along a spatial climatic gradient and according to temporal (i.e., annual) climatic variation. Results indicate that the longevity (i.e., number of years) of the self-limiting effect ranges between 15 yr in the warm and dry study area in the southwestern United States to 33 yr in the cold, northern study areas in located in northwestern Montana and the boreal forest of Canada. We also found that spatial climatic variation has a strong influence on wildland fire's self-limiting capacity. Specifically, the self-limiting effect within each study area was stronger and lasted longer in areas with low mean moisture deficit (i.e., wetter and cooler settings) compared to areas with high mean moisture deficit (warmer and drier settings). Last, our findings show that annual climatic variation influences wildland fire's self-limiting effect: drought conditions weakened the strength and longevity of the self-limiting effect in all study areas, albeit at varying magnitudes. Overall, our study provides support for the idea that wildland fire contributes to spatial heterogeneity in fuel ages that subsequently mediate future fire sizes and effects. However, our findings show that the strength and longevity of the self-limiting effect varies considerably according to spatial and temporal climatic variation, providing land and fire managers relevant information for effective planning and management of fire and highlighting that fire itself is an important factor contributing to fire-free intervals.


Assuntos
Clima , Secas , Ecossistema , Incêndios , Algoritmos , América do Norte
12.
Glob Chang Biol ; 23(8): 3219-3230, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28211141

RESUMO

Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform a continent-wide climate change vulnerability assessment whereby we compare the baseline climate of the protected area network in North America (Canada, United States, México-NAM) to the projected end-of-century climate (2071-2100). We estimated the projected pace at which climatic conditions may redistribute across NAM (i.e., climate velocity), and identified future nearest climate analogs to quantify patterns of climate relocation within, among, and outside protected areas. Also, we interpret climatic relocation patterns in terms of associated land-cover types. Our analysis suggests that the conservation capacity of the NAM protection network is likely to be severely compromised by a changing climate. The majority of protected areas (~80%) might be exposed to high rates of climate displacement that could promote important shifts in species abundance or distribution. A small fraction of protected areas (<10%) could be critical for future conservation plans, as they will host climates that represent analogs of conditions currently characterizing almost a fifth of the protected areas across NAM. However, the majority of nearest climatic analogs for protected areas are in nonprotected locations. Therefore, unprotected landscapes could pose additional threats, beyond climate forcing itself, as sensitive biota may have to migrate farther than what is prescribed by the climate velocity to reach a protected area destination. To mitigate future threats to the conservation capacity of the NAM protected area network, conservation plans will need to capitalize on opportunities provided by the existing availability of natural land-cover types outside the current network of NAM protected areas.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Canadá , México , América do Norte , Estados Unidos
13.
Ecol Appl ; 26(2): 346-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27209778

RESUMO

Large and severe wildfires have raised concerns about the future of forested landscapes in the southwestern United States, especially under repeated burning. In 2011, under extreme weather and drought conditions, the Las Conchas fire burned over several previous burns as well as forests not recently exposed to fire. Our purpose was to examine the influences of prior wildfires on plant community composition and structure, subsequent burn severity, and vegetation response. To assess these relationships, we used satellite-derived measures of burn severity and a nonmetric multidimensional scaling of pre- and post- Las Conchas field samples. Earlier burns were associated with shifts from forested sites to open savannas and meadows, oak scrub, and ruderal communities. These non-forested vegetation types exhibited both resistance to subsequent fire, measured by reduced burn severity, and resilience to reburning, measured by vegetation recovery relative to forests not exposed to recent prior fire. Previous shifts toward non-forested states were strongly reinforced by reburning. Ongoing losses of forests and their ecological values confirm the need for restoration interventions. However, given future wildfire and climate projections, there may also be opportunities presented by transformations toward fire-resistant and resilient vegetation types within portions of the landscape.


Assuntos
Conservação de Recursos Energéticos , Ecossistema , Incêndios , Plantas/classificação , Florestas , Pradaria , New Mexico , Desenvolvimento Vegetal , Sudoeste dos Estados Unidos , Árvores
14.
Ecol Appl ; 25(6): 1478-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26552258

RESUMO

Theory suggests that natural fire regimes can result in landscapes that are both self-regulating and resilient to fire. For example, because fires consume fuel, they may create barriers to the spread of future fires, thereby regulating fire size. Top-down controls such as weather, however, can weaken this effect. While empirical examples demonstrating this pattern-process feedback between vegetation and fire exist, they have been geographically limited or did not consider the influence of time between fires and weather. The availability of remotely sensed data identifying fire activity over the last four decades provides an opportunity to explicitly quantify-the ability of wildland fire to limit the progression of subsequent fire. Furthermore, advances in fire progression mapping now allow an evaluation of how daily weather as a top-down control modifies this effect. In this study, we evaluated the ability of wildland fire to create barriers that limit the spread of subsequent fire along a gradient representing time between fires in four large study areas in the western United States. Using fire progression maps in conjunction with weather station data, we also evaluated the influence of daily weather. Results indicate that wildland fire does limit subsequent fire spread in all four study areas, but this effect decays over time; wildland fire no longer limits subsequent fire spread 6-18 years after fire, depending on the study area. We also found that the ability of fire to regulate, subsequent fire progression was substantially reduced under extreme conditions compared to moderate weather conditions in all four study areas. This study increases understanding of the spatial feedbacks that can lead to self-regulating landscapes as well as the effects of top-down controls, such as weather, on these feedbacks. Our results will be useful to managers who seek to restore natural fire regimes or to exploit recent burns when managing fire.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental/estatística & dados numéricos , Incêndios , Tempo (Meteorologia) , Monitoramento Ambiental/métodos , Estados Unidos
15.
Glob Chang Biol ; 20(8): 2518-30, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24700739

RESUMO

Given that they can burn for weeks or months, wildfires in temperate and boreal forests may become immense (eg., 10(0) - 10(4) km(2) ). However, during the period within which a large fire is 'active', not all days experience weather that is conducive to fire spread; indeed most of the spread occurs on a small proportion (e.g., 1 - 15 days) of not necessarily consecutive days during the active period. This study examines and compares the Canada-wide patterns in fire-conducive weather ('potential' spread) and the spread that occurs on the ground ('realized' spread). Results show substantial variability in distributions of potential and realized spread days across Canada. Both potential and realized spread are higher in western than in eastern Canada; however, whereas potential spread generally decreases from south to north, there is no such pattern with realized spread. The realized-to-potential fire-spread ratio is considerably higher in northern Canada than in the south, indicating that proportionally more fire-conducive days translate into fire progression. An exploration of environmental correlates to spread show that there may be a few factors compensating for the lower potential spread in northern Canada: a greater proportion of coniferous (i.e., more flammable) vegetation, lesser human impacts (i.e., less fragmented landscapes), sufficient fire ignitions, and intense droughts. Because a linear relationship exists between the frequency distributions of potential spread days and realized spread days in a fire zone, it is possible to obtain one from the other using a simple conversion factor. Our methodology thus provides a means to estimate realized fire spread from weather-based data in regions where fire databases are poor, which may improve our ability to predict future fire activity.


Assuntos
Incêndios , Tempo (Meteorologia) , Canadá , Florestas , Modelos Teóricos , Tecnologia de Sensoriamento Remoto
16.
Ecol Appl ; 24(8): 1898-907, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29185661

RESUMO

Establishing protection networks to ensure that biodiversity and associated ecosystem services persist under changing environments is a major challenge for conservation planning. The potential consequences of altered climates for the structure and function of ecosystems necessitates new and complementary approaches be incorporated into traditional conservation plans. The conterminous United States of America (CONUS) has an extensive system of protected areas managed by federal agencies, but a comprehensive assessment of how this network represents CONUS climate is lacking. We present a quantitative classification of the climate space that is independent from the geographic locations to evaluate the climatic representation of the existing protected area network. We use this classification to evaluate the coverage of each agency's jurisdiction and to identify current conservation deficits. Our findings reveal that the existing network poorly represents CONUS climatic diversity. Although rare climates are generally well represented by the network, the most common climates are particularly underrepresented. Overall, 83% of the area of the CONUS corresponds to climates underrepresented by the network. The addition of some currently unprotected federal lands to the network would enhance the coverage of CONUS climates. However, to fully palliate current conservation deficits, large-scale private-land conservation initiatives will be critical.


Assuntos
Biodiversidade , Clima , Conservação dos Recursos Naturais/legislação & jurisprudência , Governo Federal , Mapeamento Geográfico , Estados Unidos
17.
Ecol Appl ; 24(6): 1341-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29160658

RESUMO

Fire regimes of the Canadian boreal forest are driven by certain environmental factors that are highly variable from year to year (e.g., temperature, precipitation) and others that are relatively stable (e.g., land cover, topography). Studies examining the relative influence of these environmental drivers on fire activity suggest that models making explicit use of interannual variability appear to better capture years of climate extremes, whereas those using a temporal average of all available years highlight the importance of land-cover variables. It has been suggested that fire models built at different temporal resolutions may provide a complementary understanding of controls on fire regimes, but this claim has not been tested explicitly with parallel data and modeling approaches. We addressed this issue by building two models of area burned for the period 1980­2010 using 14 explanatory variables to describe ignitions, vegetation, climate, and topography. We built one model at an annual resolution, with climate and some land-cover variables being updated annually, and the other model using 31-year fire "climatology" based on averaged variables. Despite substantial differences in the variables' contributions to the two models, their predictions were broadly similar, which suggests coherence between the spatial patterns of annually varying climate extremes and long-term climate normals. Where the models' predictions diverged, discrepancies between the annual and averaged models could be attributed to specific explanatory variables. For instance, annually updating land cover allowed us to identify a possible negative feedback between flammable biomass and fire activity. These results show that building models at more than one temporal resolution affords a deeper understanding of controls on fire activity in boreal Canada than can be achieved by examining a single model. However, in terms of spatial predictions, the additional effort required to build annual models of fire activity may not always be warranted in this study area. From a management and policy standpoint, this key finding should boost confidence in models that incorporate climatic normals, thereby providing a stronger foundation on which to make decisions on adaptation and mitigation strategies for future fire activity.


Assuntos
Taiga , Incêndios Florestais , Canadá , Modelos Estatísticos , Fatores de Tempo , Incêndios Florestais/prevenção & controle
18.
Nat Commun ; 15(1): 2412, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528012

RESUMO

Fire suppression is the primary management response to wildfires in many areas globally. By removing less-extreme wildfires, this approach ensures that remaining wildfires burn under more extreme conditions. Here, we term this the "suppression bias" and use a simulation model to highlight how this bias fundamentally impacts wildfire activity, independent of fuel accumulation and climate change. We illustrate how attempting to suppress all wildfires necessarily means that fires will burn with more severe and less diverse ecological impacts, with burned area increasing at faster rates than expected from fuel accumulation or climate change. Over a human lifespan, the modeled impacts of the suppression bias exceed those from fuel accumulation or climate change alone, suggesting that suppression may exert a significant and underappreciated influence on patterns of fire globally. Managing wildfires to safely burn under low and moderate conditions is thus a critical tool to address the growing wildfire crisis.

19.
Sci Data ; 11(1): 764, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992042

RESUMO

Satellite data are effective for mapping wildfires, particularly in remote locations where monitoring is rare. Geolocated fire detections can be used for enhanced fire management and fire modelling through daily fire progression mapping. Here we present the Canadian Fire Spread Dataset (CFSDS), encompassing interpolated progressions for fires >1,000 ha in Canada from 2002-2021, representing the day-of-burning and 50 environmental covariates for every pixel. Day-of-burning was calculated by ordinary kriging of active fire detections from the Moderate Resolution Imaging Spectroradiometer and the Visible Infrared Imaging Radiometer Suite, enabling a substantial improvement in coverage and resolution over existing datasets. Day of burning at each pixel was used to identify environmental conditions of burning such as daily weather, derived weather metrics, topography, and forest fuels characteristics. This dataset can be used in a broad range of research and management applications, such as retrospective analysis of fire spread, as a benchmark dataset for validating statistical or machine-learning models, and for forecasting the effects of climate change on fire activity.

20.
Ecol Appl ; 23(2): 479-92, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23634596

RESUMO

Projected increases in wildfire and other climate-driven disturbances will affect populations and communities worldwide, including host-parasite relationships. Research in temperate forests has shown that wildfire can negatively affect amphibians, but this research has occurred primarily outside of managed landscapes where interactions with human disturbances could result in additive or synergistic effects. Furthermore, parasites represent a large component of biodiversity and can affect host fitness and population dynamics, yet they are rarely included in studies of how vertebrate hosts respond to disturbance. To determine how wildfire affects amphibians and their parasites, and whether effects differ between protected and managed landscapes, we compared abundance of two amphibians and two nematodes relative to wildfire extent and severity around wetlands in neighboring protected and managed forests (Montana, USA). Population sizes of adult, male long-toed salamanders (Ambystoma macrodactylum) decreased with increased burn severity, with stronger negative effects on isolated populations and in managed forests. In contrast, breeding population sizes of Columbia spotted frogs (Rana luteiventris) increased with burn extent in both protected and managed protected forests. Path analysis showed that the effects of wildfire on the two species of nematodes were consistent with differences in their life history and transmission strategies and the responses of their hosts. Burn severity indirectly reduced abundance of soil-transmitted Cosmocercoides variabilis through reductions in salamander abundance. Burn severity also directly reduced C. variabilis abundance, possibly though changes in soil conditions. For the aquatically transmitted nematode Gyrinicola batrachiensis, the positive effect of burn extent on density of Columbia spotted frog larvae indirectly increased parasite abundance. Our results show that effects of wildfire on amphibians depend upon burn extent and severity, isolation, and prior land use. Through subsequent effects on the parasites, our results also reveal how changes in disturbance regimes can affect communities across trophic levels.


Assuntos
Ecossistema , Incêndios , Agricultura Florestal/métodos , Infecções por Nematoides/veterinária , Ranidae , Urodelos , Animais , Demografia , Larva , Masculino , Montana , Nematoides , Solo , Fatores de Tempo , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA