Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Photosynth Res ; 156(1): 3-17, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36063303

RESUMO

Our analysis of the X-ray crystal structure of canthaxanthin (CAN) showed that its ketolated ß-ionone rings can adopt two energetically equal, but structurally distinct puckers. Quantum chemistry calculations revealed that the potential energy surface of the ß-ionone ring rotation over the plane of the conjugated π-system in carotenoids depends on the pucker state of the ß-ring. Considering different pucker states and ß-ionone ring rotation, we found six separate local minima on the potential energy surface defining the geometry of the keto-ß-ionone ring-two cis and one trans orientation for each of two pucker states. We observed a small difference in energy and no difference in relative orientation for the cis-minima, but a pronounced difference for the position of trans-minimum in alternative pucker configurations. An energetic advantage of ß-ionone ring rotation from a specific pucker type can reach up to 8 kJ/mol ([Formula: see text]). In addition, we performed the simulation of linear absorption of CAN in hexane and in a unit cell of the CAN crystal. The electronic energies of [Formula: see text] transition were estimated both for the CAN monomer and in the CAN crystal. The difference between them reached [Formula: see text], which roughly corresponds to the energy gap between A and B pucker states predicted by theoretical estimations. Finally, we have discussed the importance of such effects for biological systems whose local environment determines conformational mobility, and optical/functional characteristics of carotenoid.


Assuntos
Carotenoides , Norisoprenoides , Carotenoides/química , Norisoprenoides/química , Conformação Molecular , Cantaxantina
2.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555408

RESUMO

Red blood cell (RBC) aggregation and deformation are governed by the molecular processes occurring on the membrane. Since several social important diseases are accompanied by alterations in RBC aggregation and deformability, it is important to develop a diagnostic parameter of RBC membrane structural integrity and stability. In this work, we propose membrane microviscosity assessed by time-resolved fluorescence anisotropy of the lipophilic PKH26 fluorescent probe as a diagnostic parameter. We measured the fluorescence decay curves of the PKH26 probe in the RBC membrane to establish the optimal parameters of the developed fluorescence assay. We observed a complex biphasic profile of the fluorescence anisotropy decay characterized by two correlation times corresponding to the rotational diffusion of free PKH26, and membrane-bounded molecules of the probe. The developed assay allowed us to estimate membrane microviscosity ηm in the range of 100-500 cP depending on the temperature, which paves the way for assessing RBC membrane properties in clinical applications as predictors of blood microrheological abnormalities.


Assuntos
Membrana Eritrocítica , Compostos Orgânicos , Viscosidade , Polarização de Fluorescência , Membrana Celular
3.
Int J Biol Macromol ; 223(Pt A): 1381-1393, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36395947

RESUMO

Found in many organisms, water-soluble carotenoproteins are prospective antioxidant nanocarriers for biomedical applications. Yet, the toolkit of characterized carotenoproteins is rather limited: such proteins are either too specific binders of only few different carotenoids, or their ability to transfer carotenoids to various acceptor systems is unknown. Here, by focusing on a recently characterized recombinant ~27-kDa Carotenoid-Binding Protein from Bombyx mori (BmCBP) [Slonimskiy et al., International Journal of Biological Macromolecules 214 (2022): 664-671], we analyze its carotenoid-binding repertoire and potential as a carotenoid delivery module. We show that BmCBP forms productive complexes with both hydroxyl- and ketocarotenoids - lutein, zeaxanthin, astaxanthin, canthaxanthin and a smaller antioxidant, aporhodoxanthinone, but not with ß-carotene or retinal, which defines its broad ligand specificity toward xanthophylls valuable to human health. Moreover, the His-tagged BmCBP apoform is capable of cost-efficient and scalable enrichment of xanthophylls from various crude methanolic herbal extracts. Upon carotenoid binding, BmCBP remains monomeric and shows a remarkable ability to dynamically shuttle carotenoids to biological membrane models and to unrelated carotenoproteins, which in particular makes from the cyanobacterial Orange Carotenoid Protein a blue-light controlled photoswitch. Furthermore, administration of BmCBP loaded by zeaxanthin stimulates fibroblast growth, which is attractive for cell- and tissue-based assays.


Assuntos
Bombyx , Animais , Humanos , Bombyx/metabolismo , Estudos Prospectivos , Carotenoides/química , Luteína/química , Zeaxantinas/metabolismo , Antioxidantes , Proteínas de Membrana Transportadoras
4.
Structure ; 30(12): 1647-1659.e4, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356587

RESUMO

STARD3, a steroidogenic acute regulatory lipid transfer protein, was identified as a key xanthophyll-binding protein in the human retina. STARD3 and its homologs in invertebrates are known to bind and transport carotenoids, but this lacks structural elucidation. Here, we report high-resolution crystal structures of the apo- and zeaxanthin (ZEA)-bound carotenoid-binding protein from silkworm Bombyx mori (BmCBP). Having a STARD3-like fold, BmCBP features novel elements, including the Ω1-loop that, in the apoform, is uniquely fixed on the α4-helix by an R173-D279 salt bridge. We exploit absorbance, Raman and dichroism spectroscopy, and calorimetry to describe how ZEA and BmCBP mutually affect each other in the complex. We identify key carotenoid-binding residues, confirm their roles by ZEA-binding capacity and X-ray structures of BmCBP mutants, and also demonstrate that markedly different carotenoid-binding capacities of BmCBP and human STARD3 stem from differences in the structural organization of their carotenoid-binding cavity.


Assuntos
Bombyx , Luteína , Animais , Humanos , Zeaxantinas/metabolismo , Luteína/química , Luteína/metabolismo , Proteínas de Transporte/química , Bombyx/metabolismo , Carotenoides/metabolismo
5.
Membranes (Basel) ; 12(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295665

RESUMO

Carotenoids are potent antioxidants with a wide range of biomedical applications. However, their delivery into human cells is challenging and relatively inefficient. While the use of natural water-soluble carotenoproteins capable to reversibly bind carotenoids and transfer them into membranes is promising, the quantitative estimation of the delivery remains unclear. In the present work, we studied echinenone (ECN) delivery by cyanobacterial carotenoprotein AnaCTDH (C-terminal domain homolog of the Orange Carotenoid Protein from Anabaena), into liposome membranes labelled with BODIPY fluorescent probe. We observed that addition of AnaCTDH-ECN to liposomes led to the significant changes in the fast-kinetic component of the fluorescence decay curve, pointing on the dipole-dipole interactions between the probe and ECN within the membrane. It may serve as an indirect evidence of ECN delivery into membrane. To study the delivery in detail, we carried out molecular dynamics modeling of the localization of ECN within the lipid bilayer and calculate its orientation factor. Next, we exploited FRET to assess concentration of ECN delivered by AnaCTDH. Finally, we used time-resolved fluorescence anisotropy to assess changes in microviscosity of liposomal membranes. Incorporation of liposomes with ß-carotene increased membrane microviscosity while the effect of astaxanthin and its mono- and diester forms was less pronounced. At temperatures below 30 °C addition of AnaCTDH-ECN increased membrane microviscosity in a concentration-dependent manner, supporting the protein-mediated carotenoid delivery mechanism. Combining all data, we propose FRET-based analysis and assessment of membrane microviscosity as potent approaches to characterize the efficiency of carotenoids delivery into membranes.

6.
Antioxidants (Basel) ; 9(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942578

RESUMO

To counteract oxidative stress, antioxidants including carotenoids are highly promising, yet their exploitation is drastically limited by the poor bioavailability and fast photodestruction, whereas current delivery systems are far from being efficient. Here we demonstrate that the recently discovered nanometer-sized water-soluble carotenoprotein from Anabaena sp. PCC 7120 (termed AnaCTDH) transiently interacts with liposomes to efficiently extract carotenoids via carotenoid-mediated homodimerization, yielding violet-purple protein samples. We characterize the spectroscopic properties of the obtained pigment-protein complexes and the thermodynamics of liposome-protein carotenoid transfer and demonstrate the delivery of carotenoid echinenone from AnaCTDH into liposomes with an efficiency of up to 70 ± 3%. Most importantly, we show efficient carotenoid delivery to membranes of mammalian cells, which provides protection from reactive oxygen species (ROS). Incubation of neuroblastoma cell line Tet21N in the presence of 1 µM AnaCTDH binding echinenone decreased antimycin A ROS production by 25% (p < 0.05). The described carotenoprotein may be considered as part of modular systems for the targeted antioxidant delivery.

7.
J Biomol Struct Dyn ; 34(2): 250-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25851284

RESUMO

In our previous communication, we have reported that virions of plant Potyvirus Potato Virus A (PVA) have a peculiar structure characterized by high content of disordered regions in intravirus coat protein (CP). In this report, we describe unusual properties of the PVA CP. With the help of a number of physicochemical methods, we have observed that the PVA CP just released from the virions by heating at 60-70 °C undergoes association into oligomers and transition to ß- (and even cross-ß-) conformation. Transition to ß-structure on heating has been recently reported for a number of viral and non-viral proteins. The PVA CP isolated by LiCl method was also transformed into cross-ß-structure on heating to 60 °C. Using the algorithms for protein aggregation prediction, we found that the aggregation-prone segments should be located in the central region of a PVA CP molecule. Possibly this transition mimics some functions of PVA CP in the virus life cycle in infected plants.


Assuntos
Proteínas do Capsídeo/química , Temperatura Alta , Potyvirus/química , Estrutura Secundária de Proteína , Análise Espectral Raman
8.
J Biomol Struct Dyn ; 32(5): 701-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404770

RESUMO

Conversion of the rod-like tobacco mosaic virus (TMV) virions into "ball-like particles" by thermal denaturation at 90-98 °C had been described by R.G. Hart in 1956. We have reported recently that spherical particles (SPs) generated by thermal denaturation of TMV at 94-98 °C were highly stable, RNA-free, and water-insoluble. The SPs were uniform in shape but varied widely in size (53-800 nm), which depended on the virus concentration. Here, we describe some structural characteristics of SPs using circular dichroism, fluorescence spectroscopy, and Raman spectroscopy. It was found that the structure of SPs protein differs strongly from that of the native TMV and is characterized by coat protein subunits transition from mainly (about 50%) α-helical structure to a structure with low content of α-helices and a significant fraction of ß-sheets. The SPs demonstrate strong reaction with thioflavin T suggesting the formation of amyloid-like structures.


Assuntos
Proteínas do Capsídeo/química , Subunidades Proteicas/química , Vírus do Mosaico do Tabaco/química , Dicroísmo Circular , Temperatura Alta , Nanopartículas , Desnaturação Proteica , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Análise Espectral Raman , Nicotiana/virologia , Vírion/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA