Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 25(8): e14375, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38712917

RESUMO

PURPOSE: Online adaptive radiotherapy relies on a high degree of automation to enable rapid planning procedures. The Varian Ethos intelligent optimization engine (IOE) was originally designed for conventional treatments so it is crucial to provide clear guidance for lung SAbR plans. This study investigates using the Ethos IOE together with adaptive-specific optimization tuning structures we designed and templated within Ethos to mitigate inter-planner variability in meeting RTOG metrics for both online-adaptive and offline SAbR plans. METHODS: We developed a planning strategy to automate the generation of tuning structures and optimization. This was validated by retrospective analysis of 35 lung SAbR cases (total 105 fractions) treated on Ethos. The effectiveness of our planning strategy was evaluated by comparing plan quality with-and-without auto-generated tuning structures. Internal target volume (ITV) contour was compared between that drawn from CT simulation and from cone-beam CT (CBCT) at time of treatment to verify CBCT image quality and treatment effectiveness. Planning strategy robustness for lung SAbR was quantified by frequency of plans meeting reference plan RTOG constraints. RESULTS: Our planning strategy creates a gradient within the ITV with maximum dose in the core and improves intermediate dose conformality on average by 2%. ITV size showed no significant difference between those contoured from CT simulation and first fraction, and also trended towards decreasing over course of treatment. Compared to non-adaptive plans, adaptive plans better meet reference plan goals (37% vs. 100% PTV coverage compliance, for scheduled and adapted plans) while improving plan quality (improved GI (gradient index) by 3.8%, CI (conformity index) by 1.7%). CONCLUSION: We developed a robust and readily shareable planning strategy for the treatment of adaptive lung SAbR on the Ethos system. We validated that automatic online plan re-optimization along with the formulated adaptive tuning structures can ensure consistent plan quality. With the proposed planning strategy, highly ablative treatments are feasible on Ethos.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Neoplasias Pulmonares , Órgãos em Risco , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Tomografia Computadorizada de Feixe Cônico/métodos , Radiocirurgia/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Órgãos em Risco/efeitos da radiação , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
2.
Adv Radiat Oncol ; 9(6): 101476, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38690296

RESUMO

This article focuses on various aspects of breast radiation treatment planning, from simulation to field design. It covers the most common techniques including tangents, mono isocentric, dual isocentric, electron-photon match, and VMAT. This can serve as a guide for radiation oncology residents and medical students to advance their understanding of key aspects of breast radiation treatment and planning processes.

3.
Br J Pharmacol ; 181(15): 2413-2428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38770951

RESUMO

BACKGROUND AND PURPOSE: Cystic fibrosis (CF) patients are living longer and healthier due to improved treatments, e.g. cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI), with treatment possibly occurring in pregnancy. The risk of ETI to foetuses remain unknown. Thus the effect of maternally administered ETI on foetal genetic and structural development was investigated. EXPERIMENTAL APPROACH: Pregnant Sprague Dawley rats were orally treated with ETI (6.7 mg·kg-1·day-1 elexacaftor + 3.5 mg·kg-1·day-1 tezacaftor + 25 mg·kg-1·day-1 ivacaftor) for 7 days from E12 to E19. Tissue samples collected at E19 were analysed using histology and RNA sequencing. Histological changes and differentially expressed genes (DEG) were assessed. KEY RESULTS: No overt structural abnormalities were found in foetal pancreas, liver, lung and small intestine after 7-day ETI exposure. Very few non-functionally associated DEG in foetal liver, lung and small intestine were identified using RNA-seq. 29 DEG were identified in thymus (27 up-regulated and two down-regulated) and most were functionally linked to each other. Gene ontology enrichment analysis revealed that multiple muscle-related terms were significantly enriched. Many more DEG were identified in cortex (44 up-regulated and four down-regulated) and a group of these were involved in central nervous system and brain development. CONCLUSION AND IMPLICATION: Sub-chronic ETI treatment in late pregnancy does not appear to pose a significant risk to the genetic and structural development of many foetal tissues. However, significant gene changes in foetal thymic myoid cells and cortical neuronal development requires future follow-up studies to assess the risk to these organs.


Assuntos
Aminofenóis , Benzodioxóis , Combinação de Medicamentos , Indóis , Pirazóis , Piridinas , Ratos Sprague-Dawley , Feminino , Animais , Gravidez , Aminofenóis/toxicidade , Aminofenóis/administração & dosagem , Ratos , Pirazóis/administração & dosagem , Pirazóis/toxicidade , Benzodioxóis/administração & dosagem , Indóis/administração & dosagem , Indóis/toxicidade , Piridinas/toxicidade , Piridinas/administração & dosagem , Quinolonas/toxicidade , Quinolonas/administração & dosagem , Pirróis/administração & dosagem , Pirróis/toxicidade , Pirrolidinas/administração & dosagem , Pirrolidinas/toxicidade , Pirrolidinas/farmacologia , Feto/efeitos dos fármacos , Feto/metabolismo , Exposição Materna/efeitos adversos , Quinolinas
4.
Phys Med Biol ; 69(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38640914

RESUMO

Objective.Magnetic nanoparticles can be used as a targeted delivery vehicle for genetic therapies. Understanding how they can be manipulated within the complex environment of live airways is key to their application to cystic fibrosis and other respiratory diseases.Approach.Dark-field x-ray imaging provides sensitivity to scattering information, and allows the presence of structures smaller than the detector pixel size to be detected. In this study, ultra-fast directional dark-field synchrotron x-ray imaging was utlilised to understand how magnetic nanoparticles move within a live, anaesthetised, rat airway under the influence of static and moving magnetic fields.Main results.Magnetic nanoparticles emerging from an indwelling tracheal cannula were detectable during delivery, with dark-field imaging increasing the signal-to-noise ratio of this event by 3.5 times compared to the x-ray transmission signal. Particle movement as well as particle retention was evident. Dynamic magnetic fields could manipulate the magnetic particlesin situ. Significance.This is the first evidence of the effectiveness ofin vivodark-field imaging operating at these spatial and temporal resolutions, used to detect magnetic nanoparticles. These findings provide the basis for further development toward the effective use of magnetic nanoparticles, and advance their potential as an effective delivery vehicle for genetic agents in the airways of live organisms.


Assuntos
Técnicas de Transferência de Genes , Animais , Ratos , Fatores de Tempo , Campos Magnéticos , Traqueia/diagnóstico por imagem , Nanopartículas de Magnetita/química , Raios X , Síncrotrons
5.
Ann Med Surg (Lond) ; 86(1): 199-206, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222761

RESUMO

Study design: Prospective experimental study. Objective: To compare the accuracy of O-Arm-acquired radiographic and computed tomography (CT) evaluation of thoracic pedicle screw placement with open laminectomy in a simulation laboratory. Summary of background data: Improving surgical safety and procedural efficiency during thoracic posterior spine instrumentation is essential for decreasing complication rates and possible related risks. The most common way of verifying the position of pedicle screws during the surgical procedure and immediately postoperatively is to acquire intraoperative fluoroscopic images and plain radiographs of the spine, respectively. Laboratory simulated surgery is a valuable tool to evaluate the accuracy of those exams. Methods: Twenty simulation models of scoliosis from T3 to T7 were instrumented by five spine fellows (total of 200 pedicle screws), followed by radiographic and CT images acquired with the assistance of the O-Arm which were evaluated by three independent raters. A fellowship-trained spine neurosurgeon performed laminectomies on the instrumented levels and assessed pedicle integrity (gold standard). Results: Forty-eight breaches were identified in the axial direct view after laminectomy. Of those, eighteen breaches were classified as unacceptable. Regarding the sagittal direct view, four breaches were observed, three of which were classified as unacceptable. Overall, both O-arm radiographic and CT evaluations had a significantly high negative predicted value but a low positive predicted value to identify unacceptable breaches, especially in the sagittal plane. The frequency of missed breaches by all three examiners was high, particularly in the sagittal plane. Conclusion: Postoperative evaluation of pedicle screws using O-arm-acquired radiographic or CT images may underdiagnose the presence of breaches. In our study, sagittal breaches were more difficult to diagnose than axial breaches. Although most breaches do not have clinical repercussions, this study suggests that this modality of postoperative radiographic assessment may be inaccurate. Level of evidence: 4.

6.
Biomed Pharmacother ; 171: 116155, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232663

RESUMO

BACKGROUND: The potential effects of the very effective cystic fibrosis triple combination drug, Elexacaftor/Tezacaftor/Ivacaftor (ETI) in pregnancy on prenatal development of offspring remain largely unknown. RESEARCH QUESTION: We aimed to investigate the fetal tissue distribution pattern of maternally administered ETI by placental transfer in the rat fetuses. STUDY DESIGN AND METHODS: Sprague Dawley pregnant rats were administered ETI (6.7 mg/kg/d elexacaftor + 3.5 mg/kg/d tezacaftor + 25 mg/kg/d ivacaftor) traced with [3 H]-ivacaftor in single dose acute experiments (intraperitoneal injection) or treated orally with ETI (the same dose) for 7 days in sub-chronic experiments. Fetal tissue samples were collected at embryonic day (E) 19 and analyzed using liquid scintillation counting for acute experiments or liquid chromatography-mass spectrometry for sub-chronic experiments. RESULTS: On day E19, after acute exposure, the entry of ivacaftor into fetal brain (brain/plasma concentration ratios <50%) was significantly lower than to other tissues (>100%). However, after sub-chronic exposure, the entry of all 3 components into the developing brain was comparably extensive as into other tissues (tissue/plasma ratios, 260 - 1000%). Each component of ETI accumulated in different fetal tissues to approximately equal extent. Inter-litter differences on fetal drug distribution were found in cortex for ivacaftor, muscle for tezacaftor and cortex and mid/hindbrain for elexacaftor. Fetal plasma concentrations of ETI (ng/mL) were variable between litters. The entry of ivacaftor and tezacaftor into adult brain appeared to be restricted (<100%). INTERPRETATION: Fetal rats are exposed to maternally ingested ETI after sub-chronic exposure, potentially impacting fetal development. The brain entry data highlights the need for attention be paid to any long-term potential effects ETI exposure could have on normal brain development.


Assuntos
Aminofenóis , Regulador de Condutância Transmembrana em Fibrose Cística , Indóis , Placenta , Pirazóis , Piridinas , Pirrolidinas , Quinolonas , Feminino , Gravidez , Ratos , Animais , Ratos Sprague-Dawley , Feto , Benzodioxóis , Mutação
7.
Phys Med ; 125: 104495, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098107

RESUMO

BACKGROUND: Surface-guided imaging (SGI) is increasingly utilized to monitor patient motion during deep inspiration breath hold (DIBH) in radiotherapy. Understanding the association between surface and internal motion is crucial for effective monitoring. PURPOSE: To investigate the relation between motion detected by SGI using surface-guided radiotherapy (SGRT) and internal motion measured through diaphragm tracking on kV projections acquired with DIBH for online CBCT. METHODS: Both SGI and kV were simultaneously acquired for ten patients over a total of 200 breath holds (BH). Diaphragm tracking was performed using second-degree polynomial curve fitting on the derivative images for each kV projection and high-pass filtering at 1/30 Hz to remove rotational effects. The superior-inferior (SI) and anterior-posterior (AP) motions of SGI were then compared to kV tracking using various statistical measures. RESULTS: The correlation (individuals' median: -0.07 to 0.73) was a suboptimal metric for the BH data. The median and 95th percentile absolute differences between SGI-SI and kV were 0.73 mm and 3.46 mm, respectively, during DIBH. For SGI-AP, the corresponding values were 0.55 mm and 2.80 mm. For inter-BH measurements, the contingency table based on a 3 mm threshold indicated surface/diaphragm motion agreement for SGI-SI/kV and SGI-AP/kV was 61 % and 56 %, respectively. CONCLUSION: Both intra- and inter-BH measurements indicated a limited association between surface and diaphragm motion, with certain constraints noted due to kV tracking and DIBH data. These findings warrant further investigation into the association between surface and internal motion.

8.
Pract Radiat Oncol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579986

RESUMO

PURPOSE: Real-time adaptation of thoracic radiation plans is compelling because offline adaptive experiences show that tumor volumes and lung anatomy can change during therapy. We present and analyze a novel adaptive-on-demand (AOD) workflow combining online adaptive radiation therapy (o-ART) on the ETHOS system with image guided radiation therapy delivery on a Halcyon unit for conventional fractionated radiation therapy of locally advanced lung cancer (LALC). METHODS AND MATERIALS: We analyzed 26 patients with LALC treated with the AOD workflow, adapting weekly. We timed segments of the workflow to evaluate efficiency in a real-world clinic. Target coverage and organ at risk (OAR) doses were compared between adaptive plans (ADP) and nonadaptive scheduled plans (SCH). Planning robustness was evaluated by the frequency of preplanning goals achieved in ADP plans, stratified by tumor volume change. RESULTS: The AOD workflow was achievable within 30 minutes for most radiation fractions. Over the course of therapy, we observed an average 26.6% ± 23.3% reduction in internal target volume (ITV). Despite these changes, with o-ART, ITV and planning target volume (PTV) coverage (V100%) was 99.2% and 93.9% for all members of the cohort, respectively. This represented a 2.9% and 6.8% improvement over nonadaptive plans (P < .05), respectively. For tumors that grew >10%, V100% was 93.1% for o-ART and 76.4% for nonadaptive plans, representing a median 17.2% improvement in the PTV coverage (P < .05). In these plans, critical OAR constraints were met 94.1% of the time, whereas in nonadaptive plans, this figure was 81.9%. This represented reductions of 1.32 Gy, 1.34 Gy, or 1.75 Gy in the heart, esophagus, and lung, respectively. The effect was larger when tumors had shrunk more than 10%. Regardless of tumor volume alterations, the PTV/ITV coverage was achieved for all adaptive plans. Exceptional cases, where dose constraints were not met, were due to large initial tumor volumes or tumor growth. CONCLUSIONS: The AOD workflow is efficient and robust in responding to anatomic changes in LALC patients, providing dosimetric advantages over standard therapy. Weekly adaptation was adequate to keep pace with changes. This approach is a feasible alternative to conventional offline replanning workflows for managing anatomy changes in LALC radiation therapy.

9.
BMJ Open ; 14(2): e080034, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316593

RESUMO

INTRODUCTION: Cystic fibrosis (CF) is a life-limiting autosomal recessive genetic condition. It is caused by mutations in the gene that encodes for a chloride and bicarbonate conducting transmembrane channel. X-ray velocimetry (XV) is a novel form of X-ray imaging that can generate lung ventilation data through the breathing cycle. XV technology has been validated in multiple animal models, including the ß-ENaC mouse model of CF lung disease. It has since been assessed in early-phase clinical trials in adult human subjects; however, there is a paucity of data in the paediatric cohort, including in CF. The aim of this pilot study was to investigate the feasibility of performing a single-centre cohort study in paediatric patients with CF and in those with normal lungs to demonstrate the appropriateness of proceeding with further studies of XV in these cohorts. METHODS AND ANALYSIS: This is a cross-sectional, single-centre, pilot study. It will recruit children aged 3-18 years to have XV lung imaging performed, as well as paired pulmonary function testing. The study will aim to recruit 20 children without CF with normal lungs and 20 children with CF. The primary outcome will be the feasibility of recruiting children and performing XV testing. Secondary outcomes will include comparisons between XV and current assessments of pulmonary function and structure. ETHICS AND DISSEMINATION: This project has ethical approval granted by The Women's and Children's Hospital Human Research Ethics Committee (HREC ID 2021/HRE00396). Findings will be disseminated through peer-reviewed publication and conferences. TRIAL REGISTRATION NUMBER: ACTRN12623000109606.


Assuntos
Fibrose Cística , Adulto , Animais , Camundongos , Criança , Humanos , Feminino , Fibrose Cística/diagnóstico por imagem , Fibrose Cística/complicações , Projetos Piloto , Raios X , Estudos de Coortes , Estudos Transversais , Pulmão/diagnóstico por imagem
10.
Biomed Phys Eng Express ; 10(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241733

RESUMO

This study explored the feasibility of on-couch intensity modulated radiotherapy (IMRT) planning for prostate cancer (PCa) on a cone-beam CT (CBCT)-based online adaptive RT platform without an individualized pre-treatment plan and contours. Ten patients with PCa previously treated with image-guided IMRT (60 Gy/20 fractions) were selected. In contrast to the routine online adaptive RT workflow, a novel approach was employed in which the same preplan that was optimized on one reference patient was adapted to generate individual on-couch/initial plans for the other nine test patients using Ethos emulator. Simulation CTs of the test patients were used as simulated online CBCT (sCBCT) for emulation. Quality assessments were conducted on synthetic CTs (sCT). Dosimetric comparisons were performed between on-couch plans, on-couch plans recomputed on the sCBCT and individually optimized plans for test patients. The median value of mean absolute difference between sCT and sCBCT was 74.7 HU (range 69.5-91.5 HU). The average CTV/PTV coverage by prescription dose was 100.0%/94.7%, and normal tissue constraints were met for the nine test patients in on-couch plans on sCT. Recalculating on-couch plans on the sCBCT showed about 0.7% reduction of PTV coverage and a 0.6% increasing of hotspot, and the dose difference of the OARs was negligible (<0.5 Gy). Hence, initial IMRT plans for new patients can be generated by adapting a reference patient's preplan with online contours, which had similar qualities to the conventional approach of individually optimized plan on the simulation CT. Further study is needed to identify selection criteria for patient anatomy most amenable to this workflow.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Masculino , Humanos , Estudos de Viabilidade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia
12.
Front Pharmacol ; 15: 1362325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545546

RESUMO

Introduction: Phe508del is the most common cystic fibrosis transmembrane conductance regulator (CFTR) gene variant that results in the recessive genetic disorder cystic fibrosis (CF). The recent development of highly effective CFTR modulator therapies has led to significant health improvements in individuals with this mutation. While numerous animal models of CF exist, few have a CFTR mutation that is amenable to the triple combination therapy elexacaftor-tezacaftor-ivacaftor (ETI). Methods: To determine the responsiveness of Phe508del rats to ETI, a baseline nasal potential difference was measured. Subsequently, they received ETI daily for 14 days, after which post-treatment nasal potential difference, lung mechanics (via flexiVent) and lung ventilation (via X-ray Velocimetry) were assessed. Results: Chloride ion transport in nasal airways was restored in Phe508del rats treated with ETI, but neither lung mechanics nor ventilation were significantly altered. Discussion: These findings validate the usefulness of this rat model for future investigations of modulator therapy in CF.

13.
Med Phys ; 51(6): 3932-3949, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710210

RESUMO

BACKGROUND: In radiation therapy (RT), accelerated partial breast irradiation (APBI) has emerged as an increasingly preferred treatment modality over conventional whole breast irradiation due to its targeted dose delivery and shorter course of treatment. APBI can be delivered through various modalities including Cobalt-60-based systems and linear accelerators with C-arm, O-ring, or robotic arm design. Each modality possesses distinct features, such as beam energy or the degrees of freedom in treatment planning, which influence their respective dose distributions. These modality-specific considerations emphasize the need for a quantitative approach in determining the optimal dose delivery modality on a patient-specific basis. However, manually generating treatment plans for each modality across every patient is time-consuming and clinically impractical. PURPOSE: We aim to develop an efficient and personalized approach for determining the optimal RT modality for APBI by training predictive models using two different deep learning-based convolutional neural networks. The baseline network performs a single-task (ST), predicting dose for a single modality. Our proposed multi-task (MT) network, which is capable of leveraging shared information among different tasks, can concurrently predict dose distributions for various RT modalities. Utilizing patient-specific input data, such as a patient's computed tomography (CT) scan and treatment protocol dosimetric goals, the MT model predicts patient-specific dose distributions across all trained modalities. These dose distributions provide patients and clinicians quantitative insights, facilitating informed and personalized modality comparison prior to treatment planning. METHODS: The dataset, comprising 28 APBI patients and their 92 treatment plans, was partitioned into training, validation, and test subsets. Eight patients were dedicated to the test subset, leaving 68 treatment plans across 20 patients to divide between the training and validation subsets. ST models were trained for each modality, and one MT model was trained to predict doses for all modalities simultaneously. Model performance was evaluated across the test dataset in terms of Mean Absolute Percent Error (MAPE). We conducted statistical analysis of model performance using the two-tailed Wilcoxon signed-rank test. RESULTS: Training times for five ST models ranged from 255 to 430 min per modality, totaling 1925 min, while the MT model required 2384 min. MT model prediction required an average of 1.82 s per patient, compared to ST model predictions at 0.93 s per modality. The MT model yielded MAPE of 1.1033 ± 0.3627% as opposed to the collective MAPE of 1.2386 ± 0.3872% from ST models, and the differences were statistically significant (p = 0.0003, 95% confidence interval = [-0.0865, -0.0712]). CONCLUSION: Our study highlights the potential benefits of a MT learning framework in predicting RT dose distributions across various modalities without notable compromises. This MT architecture approach offers several advantages, such as flexibility, scalability, and streamlined model management, making it an appealing solution for clinical deployment. With such a MT model, patients can make more informed treatment decisions, physicians gain more quantitative insight for pre-treatment decision-making, and clinics can better optimize resource allocation. With our proposed goal array and MT framework, we aim to expand this work to a site-agnostic dose prediction model, enhancing its generalizability and applicability.


Assuntos
Aprendizado Profundo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Doses de Radiação , Neoplasias da Mama/radioterapia , Neoplasias da Mama/diagnóstico por imagem
14.
Radiother Oncol ; 197: 110178, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38453056

RESUMO

OBJECTIVE: We explore the potential dosimetric benefits of reducing treatment volumes through daily adaptive radiation therapy for head and neck cancer (HNC) patients using the Ethos system/Intelligent Optimizer Engine (IOE). We hypothesize reducing treatment volumes afforded by daily adaption will significantly reduce the dose to adjacent organs at risk. We also explore the capability of the Ethos IOE to accommodate this highly conformal approach in HNC radiation therapy. METHODS: Ten HNC patients from a phase II trial were chosen, and their cone-beam CT (CBCT) scans were uploaded to the adaptive RT (ART) emulator. A new initial reference plan was generated using both a 1 mm and 5 mm planning target volume (PTV) expansion. Daily adaptive ART plans (1 mm) were simulated from the clinical CBCT taken every fifth fraction. Additionally, using physician-modified ART contours the larger 5 mm plan was recalculated on this recontoured on daily anatomy. Changes in target and OAR contours were measured using Dice coefficients as a surrogate of clinician effort. PTV coverage and organ-at-risk (OAR) doses were statistically compared, and the robustness of each ART plan was evaluated at fractions 5 and 35 to observe if OAR doses were within 3 Gy of pre-plan. RESULTS: This study involved six patients with oropharynx and four with larynx cancer, totaling 70 adaptive fractions. The primary and nodal gross tumor volumes (GTV) required the most adjustments, with median Dice scores of 0.88 (range: 0.80-0.93) and 0.83 (range: 0.66-0.91), respectively. For the 5th and 35th fraction plans, 80 % of structures met robustness criteria (quartile 1-3: 67-100 % and 70-90 %). Adaptive planning improved median PTV V100% coverage for doses of 70 Gy (96 % vs. 95.6 %), 66.5 Gy (98.5 % vs. 76.5 %), and 63 Gy (98.9 % vs. 74.9 %) (p < 0.03). Implementing ART with total volume reduction yielded median dose reductions of 7-12 Gy to key organs-at-risk (OARs) like submandibular glands, parotids, oral cavity, and constrictors (p < 0.05). CONCLUSIONS: The IOE enables feasible daily ART treatments with reduced margins while enhancing target coverage and reducing OAR doses for HNC patients. A phase II trial recently finished accrual and forthcoming analysis will determine if these dosimetric improvements correlate with improved patient-reported outcomes.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA