RESUMO
INTRODUCTION: Magnetic Resonance-guided Focused Ultrasound (MRgFUS) thermal ablation is an effective noninvasive ultrasonic therapy to disrupt in vivo porcine tendon but is prone to inducing skin burns. We evaluated the safety profile of a novel hybrid protocol that minimizes thermal spread by combining long-pulse focused ultrasound followed by thermal ablation. METHODS: In-vivo Achilles tendons (hybrid N = 15, thermal ablation alone N = 21) from 15 to 20 kg Yorkshire pigs were randomly assigned to 6 treatment groups in two studies. The first (N = 21) was ablation (600, 900, or 1200 J). The second (N = 15) was hybrid: pulsed FUS (13.5 MPa peak negative pressure) followed by ablation (600, 900, or 1200 J). Measurements of ankle range of motion, tendon temperature, thermal dose (240 CEM43), and assessment of skin burn were performed in both groups. RESULTS: Rupture was comparable between the two protocols: 1/5 (20%), 5/5 (100%) and 5/5 (100%) for hybrid protocol, compared to 2/7 (29%), 6/7 (86%) and 7/7 (100%) for the ablation-only protocol with energies of 600, 900, and 1200 J, respectively. The hybrid protocol produced lower maximum temperatures, smaller areas of thermal dose, fewer thermal injuries to the skin, and fewer full-thickness skin burns. The standard deviation for the area of thermal injury was also smaller for the hybrid protocol, suggesting greater predictability. CONCLUSION: This study demonstrated a hybrid MRgFUS protocol combining long-pulse FUS followed by thermal ablation to be noninferior and safer than an ablation-only protocol for extracorporeal in-vivo tendon rupture for future clinical application for noninvasive release of contracted tendon.
Assuntos
Imageamento por Ressonância Magnética , Animais , Suínos , Imageamento por Ressonância Magnética/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Tendões/diagnóstico por imagem , Terapia por Ultrassom/métodosRESUMO
INTRODUCTION: Pelvic recurrences from rectal cancer present a challenging clinical scenario. Hyperthermia represents an innovative treatment option in combination with concurrent chemoradiation to enhance therapeutic effect. We provide the initial results of a prospective single center feasibility study (NCT02528175) for patients undergoing rectal cancer retreatment using concurrent chemoradiation and mild hyperthermia with MR-guided high intensity focused ultrasound (MR-HIFU). METHODS: All patients were deemed ineligible for salvage surgery and were evaluated in a multidisciplinary fashion with a surgical oncologist, radiation oncologist and medical oncologist. Radiation was delivered to a dose of 30.6 Gy in 1.8 Gy per fraction with concurrent capecitabine. MR-HIFU was delivered on days 1, 8 and 15 of concurrent chemoradiation. Our primary objective was feasibility and toxicity. RESULTS: Six patients (total 11 screened) were treated with concurrent chemoradiation and mild hyperthermia with MR-HIFU. Tumor size varied between 3.1-16.6 cm. Patients spent an average of 228 min in the MRI suite and sonication with the external transducer lasted an average of 35 min. There were no complications on the day of the MR-HIFU procedure and all acute toxicities (no grade >/=3 toxicities) resolved after completion of treatment. There were no late grade >/=3 toxicities. CONCLUSION: Mild hyperthermia with MR-HIFU, in combination with concurrent chemoradiation for appropriately selected patients, is safe for localized pelvic recurrences from rectal cancer. The potential for MR-HIFU to be applied in the recurrent setting in rectal cancer treatment requires further technical development and prospective evaluation.
Assuntos
Quimiorradioterapia , Hipertermia Induzida , Neoplasias Retais , Terapia de Salvação , Humanos , Neoplasias Retais/terapia , Neoplasias Retais/diagnóstico por imagem , Masculino , Terapia de Salvação/métodos , Pessoa de Meia-Idade , Feminino , Hipertermia Induzida/métodos , Quimiorradioterapia/métodos , Idoso , Imageamento por Ressonância Magnética/métodos , Recidiva Local de Neoplasia/terapia , Recidiva Local de Neoplasia/diagnóstico por imagem , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Estudos Prospectivos , AdultoRESUMO
PURPOSE: Surgical resection of the tendon is an effective treatment for severe contracture. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) is a non-invasive ultrasonic therapy which produces a focal increase in temperature, subsequent tissue ablation and disruption. We evaluated MRgFUS as a clinically translatable treatment modality to non-invasively disrupt in vivo porcine tendons. MATERIAL AND METHODS: In vivo Achilles tendons (n = 28) from 15-20kg Yorkshire pigs (n = 16) were randomly assigned to 4 treatment groups of 600, 900, 1200 and 1500 J. Pretreatment range of motion (ROM) of the ankle joint was measured with the animal under general anesthesia. Following MRgFUS treatment, success of tendon rupture, ROM increase, temperature, thermal dosage, skin burn, and histology analyses were performed. RESULTS: Rupture success was found to be 29%, 86%, 100% and 100% for treatment energies of 600, 900, 1200 and 1500 J respectfully. ROM difference at 90° flexion showed a statistically significant change in ROM between 900 J and 1200 J from 16° to 27°. There was no statistical significance between other groups, but there was an increase in ROM as more energy was delivered in the treatment. For each of the respective treatment groups, the maximal temperatures were 58.4 °C, 63.3 °C, 67.6 °C, and 69.9 °C. The average areas of thermal dose measured were 24.3mm2, 53.2mm2, 77.8mm2 and 91.6mm2. The average areas of skin necrosis were 5.4mm2, 21.8mm2, 37.2mm2, and 91.4mm2. Histologic analysis confirmed tissue ablation and structural collagen fiber disruption. CONCLUSIONS: This study demonstrated that MRgFUS is able to disrupt porcine tendons in vivo without skin incisions.
Assuntos
Tendão do Calcâneo , Ablação por Ultrassom Focalizado de Alta Intensidade , Animais , Suínos , Resultado do Tratamento , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância MagnéticaRESUMO
PURPOSE: To characterize temperature fields and tissue damage profiles of large-volume hyperthermia (HT) induced by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) in deep and superficial targets in vivo in a porcine model. METHODS: Nineteen HT sessions were performed in vivo with a commercial MRgHIFU system (Sonalleve® V2, Profound Medical Inc., Mississauga, ON, Canada) in hind leg muscles of eight pigs with temperature fields of cross-sectional diameter of 58-mm. Temperature statistics evaluated in the target region-of-interest (tROI) included accuracy, temporal variation, and uniformity. The impact of the number and location of imaging planes for feedback-based temperature control were investigated. Temperature fields were characterized by time-in-range (TIR, the duration each voxel stays within 40-45 °C) maps. Tissue damage was characterized by contrast-enhanced MRI, and macroscopic and histopathological analysis. The performance of the Sonalleve® system was benchmarked against a commercial phantom. RESULTS: Across all HT sessions, the mean difference between the average temperature (Tavg) and the desired temperature was -0.4 ± 0.5 °C; the standard deviation of temperature 1.2 ± 0.2 °C; the temporal variation of Tavg for 30-min HT was 0.6 ± 0.2 °C, and the temperature uniformity was 1.5 ± 0.2 °C. A difference of 2.2-cm (in pig) and 1.5-cm (in phantom) in TIR dimensions was observed when applying feedback-based plane(s) at different locations. Histopathology showed 62.5% of examined HT sessions presenting myofiber degeneration/necrosis within the target volume. CONCLUSION: Large-volume MRgHIFU-mediated HT was successfully implemented and characterized in a porcine model in deep and superficial targets in vivo with heating distributions modifiable by user-definable parameters.
Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Hipertermia , Animais , Estudos Transversais , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , SuínosRESUMO
BACKGROUND: Teratomas are germ cell neoplasms composed of a wide variety of tissues. In the woodchuck, only one testicular teratoma has been described in the literature. The objective of this report was to describe the radiologic and pathologic findings in a female woodchuck (Marmota monax) with an ovarian teratoma consisting of mature tissues originating from all three germ layers. CASE PRESENTATION: A 2-year-old female woodchuck that had been infected at birth with woodchuck hepatitis virus and subsequently developed hepatocellular carcinoma was incidentally discovered to have a mobile 6.6 × 4.8 × 4.7 cm abdominal mass on computed tomography (CT) imaging. The tumor was predominantly solid and heterogenous on CT with soft tissue, fat, and areas of dense calcification. The teratoma did not enhance with intravenous contrast administration. On ultrasound, the tumor was solid with heterogeneous echogenicity, reflecting the fat content and areas of calcification. Sonolucent areas were present that may have represented cysts. There was heterogeneously increased signal on T1-weighted magnetic resonance imaging (MRI) and heterogeneous hyperintensity in T2-weighted imaging. Fat was evident within the tumor. At necropsy, the tumor was attached to the distal end of the right uterine horn. Histopathology showed mature tissue types representing all three germ layers. CONCLUSIONS: Ovarian teratoma should be considered in the differential diagnosis of ovarian or abdominal masses in woodchucks. The tumor displayed mature tissue derived from all three germ layers. CT, ultrasound, and MRI findings were presented in detail and matched the typical imaging appearance of teratomas.
Assuntos
Carcinoma Hepatocelular/veterinária , Marmota , Neoplasias Ovarianas/veterinária , Teratoma/veterinária , Animais , Feminino , Hepatite B/veterinária , Vírus da Hepatite B da Marmota , Neoplasias Hepáticas/veterinária , Imageamento por Ressonância Magnética/veterinária , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Teratoma/diagnóstico por imagem , Teratoma/patologia , Tomografia Computadorizada por Raios X/veterinária , Ultrassonografia/veterináriaRESUMO
PURPOSE: Magnetic resonance imaging-guided high-intensity-focused ultrasound (MR-HIFU) is a non-invasive treatment modality that precisely focuses ultrasound energy within a tumour and can be customised to result in a wide range of local bioeffects. The purpose of this study was to determine the feasibility of using MR-HIFU to treat soft tissue sarcoma (STS) in dogs. MATERIALS AND METHODS: Medical records of dogs admitted to the Virginia-Maryland College of Veterinary Medicine from 1 January 2012 to 31 December 2016 were searched for a diagnosis of sarcoma with available cross-sectional imaging of the tumour (MRI or CT). Fifty-three (53) dogs were eligible for inclusion. Tumor tissue (in bone as well as in soft tissue) was considered targetable unless: (1) the ultrasound path was completely obstructed by bone or gas and (2) the MR-HIFU target was within the spinal cord or less than 1 cm from the margin of the spinal cord. Tumors were categorised as <50% targetable, ≥50% targetable or non-targetable. RESULTS: Eighty-one percent of STS (81.1%, 43/53) were targetable. The head/spine tumour sites had the highest proportion of non-targetable tumours (36%, 9/25). The majority of truncal and axillary tumours were ≥50% targetable (88.9%, 16/18) ,and all extremity tumours were considered ≥50% targetable (100%, 5/5). CONCLUSIONS: The majority of STS were targetable. This is the first study to evaluate MR-HIFU targetability of canine STS. HIFU has potential as a therapeutic modality for treating STS in dogs, and this veterinary application is a possible model for treatment of naturally occurring STS in humans.
Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Sarcoma/diagnóstico por imagem , Sarcoma/cirurgia , Animais , Cães , Estudos de Viabilidade , Sarcoma/patologiaRESUMO
PURPOSE: Tissue-mimicking phantoms (TMPs) are synthetic materials designed to replicate properties of biological tissues. There is a need to quantify temperature changes following ultrasound or magnetic resonance imaging-guided high intensity focused ultrasound (MR-HIFU). This work describes development, characterization and evaluation of tissue-mimicking thermochromic phantom (TMTCP) for direct visualization and quantification of HIFU heating. The objectives were to (1) develop an MR-imageable, HIFU-compatible TMTCP that reports absolute temperatures, (2) characterize TMTCP physical properties and (3) examine TMTCP color change after HIFU. METHODS AND MATERIALS: A TMTCP was prepared to contain thermochromic ink, silicon dioxide and bovine serum albumin (BSA) and its properties were quantified. A clinical MRI-guided and a preclinical US-guided HIFU system were used to perform sonications in TMTCP. MRI thermometry was performed during HIFU, followed by T2-weighted MRI post-HIFU. Locations of color and signal intensity change were compared to the sonication plan and to MRI temperature maps. RESULTS: TMTCP properties were comparable to those in human soft tissues. Upon heating, the TMTCP exhibited an incremental but permanent color change for temperatures between 45 and 70 °C. For HIFU sonications the TMTCP revealed spatially sharp regions of color change at the target locations, correlating with MRI thermometry and hypointense regions on T2-weighted MRI. TMTCP-based assessment of various HIFU applications was also demonstrated. CONCLUSIONS: We developed a novel MR-imageable and HIFU-compatible TMTCP to characterize HIFU heating without MRI or thermocouples. The HIFU-optimized TMTCP reports absolute temperatures and ablation zone geometry with high spatial resolution. Consequently, the TMTCP can be used to evaluate HIFU heating and may provide an in vitro tool for peak temperature assessment, and reduce preclinical in vivo requirements for clinical translation.
Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Termometria/métodos , HumanosRESUMO
Purpose: To evaluate the feasibility and assess safety parameters of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated hyperthermia (HT; heating to 40-45 °C) in various pelvic targets in a porcine model in vivo.Methods: Thirteen HT treatments were performed in six pigs with a commercial MRgHIFU system (Sonalleve V2, Profound Medical Inc., Mississauga, Canada) to muscle adjacent to the ventral/dorsal bladder wall and uterus to administer 42 °C (±1°) for 30 min (±5%) using an 18-mm target diameter and 100 W power. Feasibility was assessed using accuracy, uniformity, and MR-thermometry performance-based metrics. Safety parameters were assessed for tissues in the targets and beam-path by contrast-enhanced MRI, gross-pathology and histopathology.Results: Across all HT sessions, the mean difference between average temperature (Tavg) and the target temperature within the target region-of-interest (tROI, the cross-section of the heated volume at focal depth) was 0.51 ± 0.33 °C. Within the tROI, the temperature standard deviation averaged 1.55 ± 0.31 °C, the average 30-min Tavg variation was 0.80 ± 0.17 °C, and the maximum difference between Tavg and the 10th- or 90th-percentile temperature averaged 2.01 ± 0.44 °C. The average time to reach ≥41 °C and cool to ≤40 °C within the tROI at the beginning and end of treatment was 47.25 ± 27.47 s and 66.37 ± 62.68 s, respectively. Compared to unheated controls, no abnormally-perfused tissue or permanent damage was evident in the MR images, gross pathology or histological analysis.Conclusions: MRgHIFU-mediated HT is feasible and safety assessment is satisfactory for treating an array of clinically-mimicking pelvic geometries in a porcine model in vivo, implying the technique may have utility in treating pelvic targets in human patients.
Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Pelve/patologia , Animais , Estudos de Viabilidade , Febre , Humanos , SuínosRESUMO
Immune responses against cancer cells are often hindered by immunosuppressive mechanisms that are developed in the tumor microenvironment. Induction of a hyporesponsive state in tumor Ag-specific T cells is one of the major events responsible for the inability of the adaptive immune system to mount an efficient antitumor response and frequently contributes to lessen the efficacy of immunotherapeutic approaches. Treatment of localized tumors by focused ultrasound (FUS) is a minimally invasive therapy that uses a range of input energy for in situ tumor ablation through the generation of thermal and cavitation effect. Using a murine B16 melanoma tumor model, we show that a variant of FUS that delivers a reduced level of energy at the focal point and generates mild mechanical and thermal stress in target cells has the ability to increase immunogenic presentation of tumor Ags, which results in reversal of tumor-induced T cell tolerance. Furthermore, we show that the combination of nonablative low-energy FUS with an ablative hypofractionated radiation therapy results in synergistic control of primary tumors and leads to a dramatic reduction in spontaneous pulmonary metastases while prolonging recurrence-free survival only in immunocompetent mice.
Assuntos
Melanoma Experimental/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T/imunologia , Evasão Tumoral/imunologia , Terapia por Ultrassom/métodos , Animais , Terapia Combinada , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Metástase Neoplásica/patologia , Metástase Neoplásica/terapia , Radioterapia , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapiaRESUMO
BACKGROUND: Osteoid osteoma (OO) is a painful bone tumour occurring in children and young adults. Magnetic resonance imaging-guided high intensity focussed ultrasound (MR-HIFU) allows non-invasive treatment without ionising radiation exposure, in contrast to the current standard of care treatment with radiofrequency ablation (RFA). This report describes technical aspects of MR-HIFU ablation in the first 8 paediatric OO patients treated in a safety and feasibility clinical trial (total enrolment of up to 12 patients). MATERIALS AND METHODS: OO lesions and adjacent periosteum were treated with MR-HIFU ablation in 5-20 sonications (sonication duration = 16-48 s, frequency = 1.2 MHz, acoustic power = 20-160 W). Detailed treatment workflow, patient positioning and coupling strategies, as well as temperature and tissue perfusion changes were summarised and correlated. RESULTS: MR-HIFU ablation was feasible in all eight cases. Ultrasound standoff pads were shaped to conform to extremity contours providing acoustic coupling and aided patient positioning. The energy delivered was 10 ± 7 kJ per treatment, raising maximum temperature to 83 ± 3 °C. Post ablation contrast-enhanced MRI showed ablated volumes ranging 0.46-19.4 cm3 extending further into bone (7 ± 4 mm) than into soft tissue (4 ± 6 mm, p = 0.01, Mann-Whitney). Treatment time ranged 30-86 min for sonication and 160 ± 40 min for anaesthesia. No serious treatment-related adverse events were observed. Complete pain relief with no medication occurred in 7/8 patients within 28 days following treatment. CONCLUSIONS: MR-HIFU ablation of painful OO appears technically feasible in children and it may become a non-invasive and radiation-free alternative for painful OO. Therapy success, efficiency, and applicability may be improved through specialised equipment designed more specifically for extremity bone ablation.
Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Imagem por Ressonância Magnética Intervencionista/métodos , Osteoma Osteoide/diagnóstico por imagem , Adolescente , Adulto , Criança , Feminino , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Humanos , Masculino , Osteoma Osteoide/patologia , Osteoma Osteoide/terapia , Adulto JovemRESUMO
PURPOSE: Since mild hyperthermia therapy (MHT) requires maintaining the temperature within a narrow window (e.g. 40-43 °C) for an extended duration (up to 1 h), accurate and precise temperature measurements are essential for ensuring safe and effective treatment. This study evaluated the precision and accuracy of MR thermometry in healthy volunteers at different anatomical sites for long scan times. METHODS: A proton resonance frequency shift method was used for MR thermometry. Eight volunteers were subjected to a 5-min scanning protocol, targeting chest wall, bladder wall, and leg muscles. Six volunteers were subjected to a 30-min scanning protocol and three volunteers were subjected to a 60-min scanning protocol, both targeting the leg muscles. The precision and accuracy of the MR thermometry were quantified. Both the mean precision and accuracy <1 °C were used as criteria for acceptable thermometry. RESULTS: Drift-corrected MR thermometry measurements based on 5-min scans of the chest wall, bladder wall, and leg muscles had accuracies of 1.41 ± 0.65, 1.86 ± 1.20, and 0.34 ± 0.44 °C, and precisions of 2.30 ± 1.21, 1.64 ± 0.56, and 0.48 ± 0.05 °C, respectively. Measurements based on 30-min scans of the leg muscles had accuracy and precision of 0.56 ± 0.05 °C and 0.42 ± 0.50 °C, respectively, while the 60-min scans had accuracy and precision of 0.49 ± 0.03 °C and 0.56 ± 0.05 °C, respectively. CONCLUSIONS: Respiration, cardiac, and digestive-related motion pose challenges to MR thermometry of the chest wall and bladder wall. The leg muscles had satisfactory temperature accuracy and precision per the chosen criteria. These results indicate that extremity locations may be preferable targets for MR-guided MHT using the existing MR thermometry technique.
Assuntos
Hipertermia Induzida , Imageamento por Ressonância Magnética , Músculo Esquelético , Termometria/métodos , Parede Torácica , Bexiga Urinária , Adulto , Feminino , Voluntários Saudáveis , Humanos , Perna (Membro) , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
PURPOSE: The lack of effective treatment options for pancreatic cancer has led to a 5-year survival rate of just 8%. Here, we evaluate the ability to enhance targeted drug delivery using mild hyperthermia in combination with the systemic administration of a low-temperature sensitive liposomal formulation of doxorubicin (LTSL-Dox) using a relevant model for pancreas cancer. MATERIALS AND METHODS: Experiments were performed in a genetically engineered mouse model of pancreatic cancer (KPC mice: LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre). LTSL-Dox or free doxorubicin (Dox) was administered via a tail vein catheter. A clinical magnetic resonance-guided high intensity focussed ultrasound (MR-HIFU) system was used to plan treatment, apply the HIFU-induce hyperthermia and monitor therapy. Post-therapy, total Dox concentration in tumour tissue was determined by HPLC and confirmed with fluorescence microscopy. RESULTS: Localized hyperthermia was successfully applied and monitored with a clinical MR-HIFU system. The mild hyperthermia heating algorithm administered by the MR-HIFU system resulted in homogenous heating within the region of interest. MR-HIFU, in combination with LTSL-Dox, resulted in a 23-fold increase in the localised drug concentration and nuclear uptake of doxorubicin within the tumour tissue of KPC mice compared to LTSL-Dox alone. Hyperthermia, in combination with free Dox, resulted in a 2-fold increase compared to Dox alone. CONCLUSION: This study demonstrates that HIFU-induced hyperthermia in combination with LTSL-Dox can be a non-invasive and effective method in enhancing the localised delivery and penetration of doxorubicin into pancreatic tumours.
Assuntos
Hipertermia Induzida/métodos , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Pancreáticas/terapia , Ultrassonografia/métodos , Animais , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Camundongos , Neoplasias Pancreáticas/patologiaRESUMO
PURPOSE: High intensity focussed ultrasound (HIFU) can non-invasively treat tumours with minimal or no damage to intervening tissues. While continuous-wave HIFU thermally ablates target tissue, the effect of hundreds of microsecond-long pulsed sonications is examined in this work. The objective of this study was to characterise sonication parameter-dependent thermomechanical bioeffects to provide the foundation for future preclinical studies and facilitate clinical translation. METHODS AND MATERIALS: Acoustic power, number of cycles/pulse, sonication time and pulse repetition frequency (PRF) were varied on a clinical magnetic resonance imaging (MRI)-guided HIFU (MR-HIFU) system. Ex vivo porcine liver, kidney and cardiac muscle tissue samples were sonicated (3 × 3 grid pattern, 1 mm spacing). Temperature, thermal dose and T2 relaxation times were quantified using MRI. Lesions were histologically analysed using H&E and vimentin stains for lesion structure and viability. RESULTS: Thermomechanical HIFU bioeffects produced distinct types of fractionated tissue lesions: solid/thermal, paste-like and vacuolated. Sonications at 20 or 60 Hz PRF generated substantial tissue damage beyond the focal region, with reduced viability on vimentin staining, whereas H&E staining indicated intact tissue. Same sonication parameters produced dissimilar lesions in different tissue types, while significant differences in temperature, thermal dose and T2 were observed between the parameter sets. CONCLUSION: Clinical MR-HIFU system was utilised to generate distinct types of lesions and to produce targeted thermomechanical bioeffects in ex vivo tissues. The results guide HIFU research on thermomechanical tissue bioeffects, inform future studies and advice sonication parameter selection for direct tumour ablation or immunomodulation using a clinical MR-HIFU system.
Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Imageamento por Ressonância Magnética , Animais , Procedimentos Cirúrgicos Cardíacos , Coração/diagnóstico por imagem , Rim/diagnóstico por imagem , Rim/cirurgia , Fígado/diagnóstico por imagem , Fígado/cirurgia , Sonicação , SuínosRESUMO
OBJECTIVE: To evaluate clinical feasibility and safety of magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) treatment of symptomatic osteoid osteoma and to compare clinical response with standard of care treatment. STUDY DESIGN: Nine subjects with radiologically confirmed, symptomatic osteoid osteoma were treated with MR-HIFU in an institutional review board-approved clinical trial. Treatment feasibility and safety were assessed. Clinical response was evaluated in terms of analgesic requirement, visual analog scale pain score, and sleep quality. Anesthesia, procedure, and recovery times were recorded. This MR-HIFU group was compared with a historical control group of 9 consecutive patients treated with radiofrequency ablation. RESULTS: Nine subjects (7 male, 2 female; 16 ± 6 years) were treated with MR-HIFU without technical difficulties or any serious adverse events. There was significant decrease in their median pain scores 4 weeks within treatment (6 vs 0, P < .01). Total pain resolution and cessation of analgesics were achieved in 8 of 9 patients after 4 weeks. In the radiofrequency ablation group, 9 patients (8 male, 1 female; 10 ± 6 years) were treated in routine clinical practice. All 9 demonstrated complete pain resolution and cessation of medications by 4 weeks with a significant decrease in median pain scores (9 vs 0, P < .001). One developed a second-degree skin burn, but there were no other adverse events. Procedure times and treatment charges were comparable between the 2 groups. CONCLUSION: This pilot study shows that MR-HIFU treatment of osteoid osteoma refractory to medical therapy is feasible and can be performed safely in pediatric patients. Clinical response is comparable with standard of care treatment but without any incisions or exposure to ionizing radiation. TRIAL REGISTRATION: ClinicalTrials.govNCT02349971.
Assuntos
Neoplasias Ósseas/cirurgia , Ablação por Cateter , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imagem por Ressonância Magnética Intervencionista , Osteoma Osteoide/cirurgia , Adolescente , Neoplasias Ósseas/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Masculino , Osteoma Osteoide/diagnóstico por imagem , Projetos Piloto , Estudos Prospectivos , Resultado do Tratamento , Adulto JovemRESUMO
PURPOSE: MRI-guided high intensity focused ultrasound (MR-HIFU) allows noninvasive heating of deep tissues. Specifically targeting visceral fat deposits with MR-HIFU could offer an effective therapy for reversing the development of obesity, diabetes, and metabolic syndrome. METHODS: Overweight rats received either MR-HIFU of visceral fat, sham treatment, no treatment, or ex vivo temperature calibration. Conventional MR thermometry methods are not effective in fat tissue. Therefore, the T2 of fat was used to estimate heating in adipose tissue. RESULTS: HIFU treated rats lost 7.5% of their body weight 10 days after HIFU, compared with 1.9% weight loss in sham animals (P = 0.008) and 1.3% weight increase in untreated animals (P = 0.004). Additionally, the abdominal fat volume in treated animals decreased by 8.2 mL 7 days after treatment (P = 0.002). The T2 of fat at 1.5 Tesla increased by 3.3 ms per °C. The fat T2 was 103.3 ms before HIFU, but increased to 128.7 ms (P = 0.0005) after HIFU at 70 watts for 16 s and to 131.9 ms (P = 0.0005) after HIFU at 100 watts for 16 s. CONCLUSION: These experiments demonstrate that MR-HIFU of visceral fat could provide a safe, effective, and noninvasive weight loss therapy for combating obesity and the subsequent medical complications. Magn Reson Med 76:282-289, 2016. © 2015 Wiley Periodicals, Inc.
Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Gordura Intra-Abdominal/diagnóstico por imagem , Gordura Intra-Abdominal/cirurgia , Imageamento por Ressonância Magnética/métodos , Obesidade/diagnóstico por imagem , Obesidade/cirurgia , Cirurgia Assistida por Computador/métodos , Animais , Gordura Intra-Abdominal/patologia , Masculino , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do TratamentoRESUMO
PURPOSE: To reconstruct proton resonance frequency-shift temperature maps free of chemical shift distortions. THEORY AND METHODS: Tissue heating created by thermal therapies such as focused ultrasound surgery results in a change in proton resonance frequency that causes geometric distortions in the image and calculated temperature maps, in the same manner as other chemical shift and off-resonance distortions if left uncorrected. We propose an online-compatible algorithm to correct these distortions in 2DFT and echo-planar imaging acquisitions, which is based on a k-space signal model that accounts for proton resonance frequency change-induced phase shifts both up to and during the readout. The method was evaluated with simulations, gel phantoms, and in vivo temperature maps from brain, soft tissue tumor, and uterine fibroid focused ultrasound surgery treatments. RESULTS: Without chemical shift correction, peak temperature and thermal dose measurements were spatially offset by approximately 1 mm in vivo. Spatial shifts increased as readout bandwidth decreased, as shown by up to 4-fold greater temperature hot spot asymmetry in uncorrected temperature maps. In most cases, the computation times to correct maps at peak heat were less than 10 ms, without parallelization. CONCLUSION: Heat-induced proton resonance frequency changes create chemical shift distortions in temperature maps resulting from MR-guided focused ultrasound surgery ablations, but the distortions can be corrected using an online-compatible algorithm. Magn Reson Med 76:172-182, 2016. © 2015 Wiley Periodicals, Inc.
Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Termografia/métodos , Temperatura Alta , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Purpose The purpose of this study was to (1) develop a novel tissue-mimicking thermochromic (TMTC) phantom that permanently changes colour from white to magenta upon heating above ablative temperatures, and (2) assess its utility for specific applications in evaluating thermal therapy devices. Materials and methods Polyacrylamide gel mixed with thermochromic ink was custom made to produce a TMTC phantom that changes its colour upon heating above biological ablative temperatures (> 60 °C). The thermal properties of the phantom were characterised, and compared to those of human tissue. In addition, utility of this phantom as a tool for the assessment of laser and microwave thermal ablation was examined. Results The mass density, thermal conductivity, and thermal diffusivity of the TMTC phantom were measured as 1033 ± 1.0 kg/m(3), 0.590 ± 0.015 W/m.K, and 0.145 ± 0.002 mm(2)/s, respectively, and found to be in agreement with reported values for human soft tissues. Heating the phantom with laser and microwave ablation devices produced clearly demarcated regions of permanent colour change geographically corresponding to regions with temperature elevations above 60 °C. Conclusion The TMTC phantom provides direct visualisation of ablation dynamics, including ablation volume and geometry as well as peak absolute temperatures within the treated region post-ablation. This phantom can be specifically tailored for different thermal therapy modalities, such as radiofrequency, laser, microwave, or therapeutic ultrasound ablation. Such modality-specific phantoms may enable better quality assurance, device characterisation, and ablation parameter optimisation, or optimise the study of dynamic heating parameters integral to drug device combination therapies relying upon heat.
Assuntos
Técnicas de Ablação , Hipertermia Induzida , Neoplasias/terapia , Imagens de Fantasmas , Resinas Acrílicas , Cor , Humanos , Lasers , Micro-Ondas , Temperatura , Condutividade TérmicaRESUMO
INTRODUCTION: Magnetic resonance-guided focused ultrasound (MRgFUS) has been demonstrated to be able to thermally ablate tendons with the aim to non-invasively disrupt tendon contractures in the clinical setting. However, the biomechanical changes of tendons permitting this disrupting is poorly understood. We aim to obtain a dose-dependent biomechanical response of tendons following magnetic resonance-guided focused ultrasound (MRgFUS) thermal ablation. METHODS: Ex vivo porcine tendons (n = 72) were embedded in an agar phantom and randomly assigned to 12 groups based on MRgFUS treatment. The treatment time was 10, 20, or 30s, and the applied acoustic power was 25, 50, 75, or 100W. Following each MRgFUS treatment, tendons underwent biomechanical tensile testing on an Instron machine, which calculated stress-strain curves during tendon elongation. Rupture rate, maximum treatment temperature, Young's modulus and ultimate strength were analyzed for each treatment energy. RESULTS: The study revealed a dose-dependent response, with tendons rupturing in over 50% of cases when energy delivery exceeded 1000J and 100% disruption at energy levels beyond 2000J. The achieved temperatures during MRgFUS were directly proportional to energy delivery. The highest recorded temperature was 56.8°C ± 9.34 (3000J), while the lowest recorded temperate was 18.6°C ± 0.6 (control). The Young's modulus was highest in the control group (47.3 MPa ± 6.5) and lowest in the 3000J group (13.2 MPa ± 5.9). There was no statistically significant difference in ultimate strength between treatment groups. CONCLUSION: This study establishes crucial thresholds for reliable and repeatable disruption of tendons, laying the groundwork for future in vivo optimization. The findings prompt further exploration of MRgFUS as a non-invasive modality for tendon disruption, offering hope for improved outcomes in patients with musculotendinous contractures.
Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Tendões , Animais , Suínos , Tendões/cirurgia , Tendões/fisiologia , Tendões/diagnóstico por imagem , Fenômenos Biomecânicos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Resistência à Tração , Módulo de ElasticidadeRESUMO
PURPOSE: To estimate the local thermal conductivity of porcine thigh muscle at temperatures required for magnetic resonance imaging (MRI)-guided high-intensity focused ultrasound (MRgHIFU) surgery (60-90°C). MATERIALS AND METHODS: Using MRgHIFU, we performed 40 volumetric ablations in the thigh muscles of four pigs. Thirty-five of the sonications were successful. We used MRI to monitor the resulting temperature increase. We then determined local thermal conductivity by analyzing the spatiotemporal spread of temperature during the cooling period. RESULTS: The thermal conductivity of MRgHIFU-treated porcine thigh muscle fell within a narrow range (0.52 ± 0.05 W/[m*K]), which is within the range reported for porcine thigh muscle at temperatures of <40°C (0.52 to 0.62 W/[m*K]). Thus, there was little change in the thermal conductivity of porcine thigh muscle at temperatures required for MRgHIFU surgery compared to lower temperatures. CONCLUSION: Our MRgHIFU-based approach allowed us to estimate, with good reproducibility, the local thermal conductivity of in vivo deep tissue in real time at temperatures of 60°C to 90°C. Therefore, our method provides a valuable tool for quantifying the influence of thermal conductivity on temperature distribution in tissues and for optimizing thermal dose delivery during thermal ablation with clinical MRgHIFU.
Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Condutividade Térmica , Animais , Músculo Esquelético/cirurgia , Reprodutibilidade dos Testes , Suínos , Coxa da PernaRESUMO
OBJECTIVE: To characterise the feasibility and safety of a novel transurethral ultrasound (US)-therapy device combined with real-time multi-plane magnetic resonance imaging (MRI)-based temperature monitoring and temperature feedback control, to enable spatiotemporally precise regional ablation of simulated prostate gland lesions in a preclinical canine model. To correlate ablation volumes measured with intra-procedural cumulative thermal damage estimates, post-procedural MRI, and histopathology. MATERIALS AND METHODS: Three dogs were treated with three targeted ablations each, using a prototype MRI-guided transurethral US-therapy system (Philips Healthcare, Vantaa, Finland). MRI provided images for treatment planning, guidance, real-time multi-planar thermometry, as well as post-treatment evaluation of efficacy. After treatment, specimens underwent histopathological analysis to determine the extent of necrosis and cell viability. Statistical analyses (Pearson's correlation, Student's t-test) were used to evaluate the correlation between ablation volumes measured with intra-procedural cumulative thermal damage estimates, post-procedural MRI, and histopathology. RESULTS: MRI combined with a transurethral US-therapy device enabled multi-planar temperature monitoring at the target as well as in surrounding tissues, allowing for safe, targeted, and controlled ablations of prescribed lesions. Ablated volumes measured by cumulative thermal dose positively correlated with volumes determined by histopathological analysis (r(2) 0.83, P < 0.001). Post-procedural contrast-enhanced and diffusion-weighted MRI showed a positive correlation with non-viable areas on histopathological analysis (r(2) 0.89, P < 0.001, and r(2) 0.91, P = 0.003, respectively). Additionally, there was a positive correlation between ablated volumes according to cumulative thermal dose and volumes identified on post-procedural contrast-enhanced MRI (r(2) 0.77, P < 0.01). There was no difference in mean ablation volumes assessed with the various analysis methods (P > 0.05, Student's t-test). CONCLUSIONS: MRI-guided transurethral US therapy enabled safe and targeted ablations of prescribed lesions in a preclinical canine prostate model. Ablation volumes were reliably predicted by intra- and post-procedural imaging. Clinical studies are needed to confirm the feasibility, safety, oncological control, and functional outcomes of this therapy in patients in whom focal therapy is indicated.