Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Res ; 32(4): 1279-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25288015

RESUMO

PURPOSE: Lipid-based formulations (LBF) are substrates for digestive lipases and digestion can significantly alter their properties and potential to support drug absorption. LBFs have been widely examined for their behaviour in the presence of pancreatic enzymes. Here, the impact of gastric lipase on the digestion of representative formulations from the Lipid Formulation Classification System has been investigated. METHODS: The pHstat technique was used to measure the lipolysis by recombinant dog gastric lipase (rDGL) of eight LBFs containing either medium (MC) or long (LC) chain triglycerides and a range of surfactants, at various pH values [1.5 to 7] representative of gastric and small intestine contents under both fasting and fed conditions. RESULTS: All LBFs were hydrolyzed by rDGL. The highest specific activities were measured at pH 4 with the type II and IIIA MC formulations that contained Tween®85 or Cremophor EL respectively. The maximum activity on LC formulations was recorded at pH 5 for the type IIIA-LC formulation. Direct measurement of LBF lipolysis using the pHstat, however, was limited by poor LC fatty acid ionization at low pH. CONCLUSIONS: Since gastric lipase initiates lipid digestion in the stomach, remains active in the intestine and acts on all representative LBFs, its implementation in future standardized in vitro assays may be beneficial. At this stage, however, routine use remains technically challenging.


Assuntos
Química Farmacêutica , Lipase/metabolismo , Lipólise , Preparações Farmacêuticas/metabolismo , Estômago/enzimologia , Triglicerídeos/metabolismo , Animais , Química Farmacêutica/métodos , Química Farmacêutica/normas , Digestão , Cães , Concentração de Íons de Hidrogênio , Hidrólise , Lipase/química , Pancreatina/química , Pancreatina/metabolismo , Preparações Farmacêuticas/química , Proteínas Recombinantes , Triglicerídeos/química
2.
Mol Pharm ; 9(11): 3286-300, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23030411

RESUMO

The LFCS Consortium was established to develop standardized in vitro tests for lipid-based formulations (LBFs) and to examine the utility of these tests to probe the fundamental mechanisms that underlie LBF performance. In this publication, the impact of bile salt (sodium taurodeoxycholate, NaTDC) concentration and drug loading on the ability of a range of representative LBFs to generate and sustain drug solubilization and supersaturation during in vitro digestion testing has been explored and a common driver of the potential for drug precipitation identified. Danazol was used as a model poorly water-soluble drug throughout. In general, increasing NaTDC concentrations increased the digestion of the most lipophilic LBFs and promoted lipid (and drug) trafficking from poorly dispersed oil phases to the aqueous colloidal phase (AP(DIGEST)). High NaTDC concentrations showed some capacity to reduce drug precipitation, although, at NaTDC concentrations ≥3 mM, NaTDC effects on either digestion or drug solubilization were modest. In contrast, increasing drug load had a marked impact on drug solubilization. For LBFs containing long-chain lipids, drug precipitation was limited even at drug loads approaching saturation in the formulation and concentrations of solubilized drug in AP(DIGEST) increased with increased drug load. For LBFs containing medium-chain lipids, however, significant precipitation was evident, especially at higher drug loads. Across all formulations a remarkably consistent trend emerged such that the likelihood of precipitation was almost entirely dependent on the maximum supersaturation ratio (SR(M)) attained on initiation of digestion. SR(M) defines the supersaturation "pressure" in the system and is calculated from the maximum attainable concentration in the AP(DIGEST) (assuming zero precipitation), divided by the solubility of the drug in the colloidal phases formed post digestion. For LBFs where phase separation of oil phases did not occur, a threshold value for SR(M) was evident, regardless of formulation composition and drug solubilization reduced markedly above SR(M) > 2.5. The threshold SR(M) may prove to be an effective tool in discriminating between LBFs based on performance.


Assuntos
Ácidos e Sais Biliares/farmacologia , Danazol/química , Lipídeos/química , Tecnologia Farmacêutica/normas , Água/química , Química Farmacêutica , Danazol/metabolismo , Digestão , Cinética , Solubilidade/efeitos dos fármacos , Tecnologia Farmacêutica/métodos
3.
AAPS J ; 16(6): 1344-57, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25274609

RESUMO

The impact of pancreatin and calcium addition on a wide array of lipid-based formulations (LBFs) during in vitro lipolysis, with regard to digestion rates and distribution of the model drug danazol, was investigated. Pancreatin primarily affected the extent of digestion, leaving drug distribution somewhat unaffected. Calcium only affected the extent of digestion slightly but had a major influence on drug distribution, with more drug precipitating at higher calcium levels. This is likely to be caused by a combination of removal of lipolysis products from solution by the formation of calcium soaps and calcium precipitating with bile acids, events known to reduce the solubilizing capacity of LBFs dispersed in biorelevant media. Further, during the digestion of hydrophilic LBFs, like IIIA-LC, the un-ionized-ionized ratio of free fatty acids (FFA) remained unchanged at physiological calcium levels. This makes the titration curves at pH 6.5 representable for digestion. However, caution should be taken when interpreting lipolysis curves of lipophilic LBFs, like I-LC, at pH 6.5, at physiological levels of calcium (1.4 mM); un-ionized-ionized ratio of FFA might change during digestion, rendering the lipolysis curve at pH 6.5 non-representable for the total digestion. The ratio of un-ionized-ionized FFAs can be maintained during digestion by applying non-physiological levels of calcium, resulting in a modified drug distribution with increased drug precipitation. However, as the main objective of the in vitro digestion model is to evaluate drug distribution, which is believed to have an impact on bioavailability in vivo, a physiological level (1.4 mM) of calcium is preferred.


Assuntos
Cálcio/química , Danazol/farmacocinética , Digestão/fisiologia , Lipídeos/química , Lipólise , Pancreatina/química , Cálcio/fisiologia , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Danazol/química , Relação Dose-Resposta a Droga , Ácidos Graxos/análise , Técnicas In Vitro , Modelos Biológicos , Pancreatina/metabolismo , Solubilidade
4.
J Pharm Sci ; 101(9): 3360-80, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22644939

RESUMO

The Lipid Formulation Classification System Consortium is an industry-academia collaboration, established to develop standardized in vitro methods for the assessment of lipid-based formulations (LBFs). In this first publication, baseline conditions for the conduct of digestion tests are suggested and a series of eight model LBFs are described to probe test performance across different formulation types. Digestion experiments were performed in vitro using a pH-stat apparatus and danazol employed as a model poorly water-soluble drug. LBF digestion (rate and extent) and drug solubilization patterns on digestion were examined. To evaluate cross-site reproducibility, experiments were conducted at two sites and highly consistent results were obtained. In a further refinement, bench-top centrifugation was explored as a higher throughput approach to separation of the products of digestion (and compared with ultracentrifugation), and conditions under which this method was acceptable were defined. Drug solubilization was highly dependent on LBF composition, but poorly correlated with simple performance indicators such as dispersion efficiency, confirming the utility of the digestion model as a means of formulation differentiation.


Assuntos
Danazol/química , Digestão , Portadores de Fármacos , Ensaios de Triagem em Larga Escala/normas , Lipídeos/química , Tecnologia Farmacêutica/normas , Centrifugação/normas , Química Farmacêutica/normas , Danazol/metabolismo , Danazol/normas , Guias como Assunto , Concentração de Íons de Hidrogênio , Cinética , Metabolismo dos Lipídeos , Lipídeos/normas , Variações Dependentes do Observador , Padrões de Referência , Reprodutibilidade dos Testes , Solubilidade , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA